完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLEE, JEen_US
dc.date.accessioned2014-12-08T15:03:44Z-
dc.date.available2014-12-08T15:03:44Z-
dc.date.issued1994-11-01en_US
dc.identifier.issn0040-5779en_US
dc.identifier.urihttp://dx.doi.org/10.1007/BF01018275en_US
dc.identifier.urihttp://hdl.handle.net/11536/2278-
dc.description.abstractThis paper is a continuation of work by Forest and Lee 1,2 . In 1,2 it was proved that the function theory of periodic soliton solutions occurs on the Riemann surfaces R of genus N, where the integrals over paths on R play the most fundamental role. In this paper a numerical method is developed to evaluate these integrals. Precisely, the aim is to develop a computational code for integrals of the form integral(gamma) f(z)dz/R(z), or integral(gamma) f(z)R(z)dz, where f(z) is any single-valued analytic function on the complex plane C, and R(z) is a two-valued function on C of the form GRAPHICS where {z(0)(k), 1 less than or equal to k less than or equal to 2N + delta} are distinct complex numbers which play the role of the branch points of the Riemann surface R = {(z, R(z))} of genus N - 1 + delta. The integral path gamma is continuous on R. The numerical code is developed in ''Mathematica'' 3 .en_US
dc.language.isoen_USen_US
dc.titleNUMERICAL COMPUTATIONS OF INTEGRALS OVER PATHS ON RIEMANN SURFACES OF GENUS-Nen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/BF01018275en_US
dc.identifier.journalTHEORETICAL AND MATHEMATICAL PHYSICSen_US
dc.citation.volume101en_US
dc.citation.issue2en_US
dc.citation.spage1281en_US
dc.citation.epage1288en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1994QY17400002-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. A1994QY17400002.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。