完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | LEE, JE | en_US |
dc.date.accessioned | 2014-12-08T15:03:44Z | - |
dc.date.available | 2014-12-08T15:03:44Z | - |
dc.date.issued | 1994-11-01 | en_US |
dc.identifier.issn | 0040-5779 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/BF01018275 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/2278 | - |
dc.description.abstract | This paper is a continuation of work by Forest and Lee 1,2 . In 1,2 it was proved that the function theory of periodic soliton solutions occurs on the Riemann surfaces R of genus N, where the integrals over paths on R play the most fundamental role. In this paper a numerical method is developed to evaluate these integrals. Precisely, the aim is to develop a computational code for integrals of the form integral(gamma) f(z)dz/R(z), or integral(gamma) f(z)R(z)dz, where f(z) is any single-valued analytic function on the complex plane C, and R(z) is a two-valued function on C of the form GRAPHICS where {z(0)(k), 1 less than or equal to k less than or equal to 2N + delta} are distinct complex numbers which play the role of the branch points of the Riemann surface R = {(z, R(z))} of genus N - 1 + delta. The integral path gamma is continuous on R. The numerical code is developed in ''Mathematica'' 3 . | en_US |
dc.language.iso | en_US | en_US |
dc.title | NUMERICAL COMPUTATIONS OF INTEGRALS OVER PATHS ON RIEMANN SURFACES OF GENUS-N | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/BF01018275 | en_US |
dc.identifier.journal | THEORETICAL AND MATHEMATICAL PHYSICS | en_US |
dc.citation.volume | 101 | en_US |
dc.citation.issue | 2 | en_US |
dc.citation.spage | 1281 | en_US |
dc.citation.epage | 1288 | en_US |
dc.contributor.department | 交大名義發表 | zh_TW |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | National Chiao Tung University | en_US |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:A1994QY17400002 | - |
dc.citation.woscount | 0 | - |
顯示於類別: | 期刊論文 |