完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, Shinq-Jenen_US
dc.contributor.authorWu, Cheng-Taoen_US
dc.date.accessioned2014-12-08T15:33:03Z-
dc.date.available2014-12-08T15:33:03Z-
dc.date.issued2013-10-01en_US
dc.identifier.issn0025-5564en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.mbs.2013.07.019en_US
dc.identifier.urihttp://hdl.handle.net/11536/23013-
dc.description.abstractS-type biological systems (S-systems) are demonstrated to be universal approximations of continuous biological systems. S-systems are easy to be generalized to large systems. The systems are identified through data-driven identification techniques (cluster-based algorithms or computational methods). However, S-systems' identification is challenging because multiple attractors exist in such highly nonlinear systems. Moreover, in some biological systems the interactive effect cannot be neglected even the interaction order is small. Therefore, learning should be focused on increasing the gap between the true and redundant interaction. In addition, a wide searching space is necessary because no prior information is provided. The used technologies should have the ability to achieve convergence enhancement and diversity preservation. Cockroaches live in nearly all habitats and survive for more than 300 million years. In this paper, we mimic cockroaches' competitive swarm behavior and integrated it with advanced evolutionary operations. The proposed cockroach genetic algorithm (CGA) possesses strong snatching-food ability to rush forward to a target and high migration ability to escape from local minimum. CGA was tested with three small-scale systems, a twenty-state medium-scale system and a thirty-state large-scale system. A wide search space ([0,100] for rate constants and [-100,100] for kinetic orders) with random or bad initial starts are used to show the high exploration performance. (C) 2013 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectInverse problemen_US
dc.subjectS-systemen_US
dc.subjectMemetic algorithmen_US
dc.subjectCockroach swarm evolutionen_US
dc.subjectStructure identificationen_US
dc.titleComputational optimization for S-type biological systems: Cockroach genetic algorithmen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.mbs.2013.07.019en_US
dc.identifier.journalMATHEMATICAL BIOSCIENCESen_US
dc.citation.volume245en_US
dc.citation.issue2en_US
dc.citation.spage299en_US
dc.citation.epage313en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000325590900018-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000325590900018.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。