完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsin, Cheng-Lunen_US
dc.contributor.authorHuang, Chun-Weien_US
dc.contributor.authorCheng, Chi-Hsuanen_US
dc.contributor.authorTeng, Hsu-Shenen_US
dc.contributor.authorWu, Wen-Weien_US
dc.date.accessioned2014-12-08T15:35:08Z-
dc.date.available2014-12-08T15:35:08Z-
dc.date.issued2014en_US
dc.identifier.issn1466-8033en_US
dc.identifier.urihttp://hdl.handle.net/11536/23847-
dc.identifier.urihttp://dx.doi.org/10.1039/c3ce41882ken_US
dc.description.abstractRegularly distributed dislocation networks with a controllable spacing have been formed by wafer bonding. Different kinds of Si bicrystals were fabricated by (001), (111) and (110) Si wafers bonded with (001) silicon-on-insulator (SOI). NiSi2 formed on the bicrystal was found to be affected by the underlying dislocation arrays, confined by the dislocation grids while the surface stress and dislocation density is high enough. It has been demonstrated that through controlling the surface stress arrangement, the shape of the silicide nanostructures can be controlled and various nanostructures can be obtained. This study supports the fundamental understanding of the stress effect on the formation of silicide nanostructures on Si bicrystals and the shape-controlled nanosilicide could be useful for the growth of catalyst-assisted one-dimensional nanostructures.en_US
dc.language.isoen_USen_US
dc.titleShape control of nickel silicide nanocrystals on stress-modified surfaceen_US
dc.typeArticleen_US
dc.identifier.doi10.1039/c3ce41882ken_US
dc.identifier.journalCRYSTENGCOMMen_US
dc.citation.volume16en_US
dc.citation.issue9en_US
dc.citation.spage1611en_US
dc.citation.epage1614en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000331175900002-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000331175900002.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。