Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hu, Vita Pi-Ho | en_US |
dc.contributor.author | Fan, Ming-Long | en_US |
dc.contributor.author | Su, Pin | en_US |
dc.contributor.author | Chuang, Ching-Te | en_US |
dc.date.accessioned | 2014-12-08T15:36:16Z | - |
dc.date.available | 2014-12-08T15:36:16Z | - |
dc.date.issued | 2011-09-01 | en_US |
dc.identifier.issn | 2156-3357 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1109/JETCAS.2011.2163691 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/24595 | - |
dc.description.abstract | This paper analyzes stability and variability of ultrathin-body (UTB) SOI subthreshold SRAMs considering line- edge roughness (LER), work function variation (WFV), and temperature sensitivity. The intrinsic advantages of UTB SOI technology versus bulk CMOS technology with regard to the stability and variability of 6T SRAM cells for subthreshold operation are analyzed. Compared with LER, WFV causes comparable threshold voltage variation and much smaller subthreshold swing fluctuation, hence less impact on the UTB SOI subthreshold SRAMs. Even considering LER, the Lg = 40 nm UTB SOI 6T subthreshold SRAM cells still provide sufficient margin (mu RSNM/sigma RSNM > 6 at Vdd = 0.3 similar to 0.4 V) while the bulk subthreshold SRAMs with RDF fail to maintain adequate margin. Increasing temperature will increase the Vread,0 and decrease RSNM because of the degraded subthreshold swing. The RSNM of UTB SOI subthreshold SRAMs showless temperature sensitivity compared with that of bulk subthreshold SRAMs. Due to larger body effect, the back-gating technique is more efficient for the Lg = 40 nm and 25 nm UTB SOI subthreshold SRAMs compared with the bulk counterparts. By using lower threshold voltage devices with dual band-gapwork functions, the Lg = 25 nm UTB SOI subthreshold SRAMs show 31.9% reduction in sigma RSNM and 55% improvement in mu RSNM/sigma RSNM. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Analysis of Ultra-Thin-Body SOI Subthreshold SRAM Considering Line-Edge Roughness, Work Function Variation, and Temperature Sensitivity | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/JETCAS.2011.2163691 | en_US |
dc.identifier.journal | IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS | en_US |
dc.citation.volume | 1 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.spage | 335 | en_US |
dc.citation.epage | 342 | en_US |
dc.contributor.department | 電子工程學系及電子研究所 | zh_TW |
dc.contributor.department | Department of Electronics Engineering and Institute of Electronics | en_US |
Appears in Collections: | Articles |