Full metadata record
DC FieldValueLanguage
dc.contributor.authorChiang, NPen_US
dc.contributor.authorFu, HLen_US
dc.date.accessioned2014-12-08T15:01:24Z-
dc.date.available2014-12-08T15:01:24Z-
dc.date.issued1997-10-15en_US
dc.identifier.issn0012-365Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/254-
dc.description.abstractIn this paper, we give another approach to the pseudo-achromatic index and the achromatic index of a graph and study upper bounds for them. We have obtained the following best possible upper bounds: (i) Psi'(G)less than or equal to Psi(S)'(G)less than or equal to right perpendicular(e(G) + chi'(G))/2left perpendicular; and (ii) Psi'(G)less than or equal to Psi(S)'(G) less than or equal to max(1 less than or equal to k less than or equal to right perpendicularp/2left perpendicular) min{right perpendicularp Delta(G)/2kright perpendicular,2k(Delta(G)-1) + 1}. Using these bounds, the pseudo-achromatic indices of graphs of certain types are obtained which generalize the results of Bouchet (1978), Chiang and Fu (1995), Geller and Kronk (1974) and Jamison (1989) for achromatic indices to pseudo-achromatic indices.en_US
dc.language.isoen_USen_US
dc.titleOn upper bounds for the pseudo-achromatic indexen_US
dc.typeArticleen_US
dc.identifier.journalDISCRETE MATHEMATICSen_US
dc.citation.volume175en_US
dc.citation.issue1-3en_US
dc.citation.spage79en_US
dc.citation.epage86en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1997YC69800008-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. A1997YC69800008.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.