Full metadata record
DC FieldValueLanguage
dc.contributor.authorKang, TKen_US
dc.contributor.authorSu, KCen_US
dc.contributor.authorChang, YJen_US
dc.contributor.authorChen, MJen_US
dc.contributor.authorYeh, SHen_US
dc.date.accessioned2014-12-08T15:38:42Z-
dc.date.available2014-12-08T15:38:42Z-
dc.date.issued2004-08-01en_US
dc.identifier.issn0021-8979en_US
dc.identifier.urihttp://dx.doi.org/10.1063/1.1751627en_US
dc.identifier.urihttp://hdl.handle.net/11536/26489-
dc.description.abstractThe quantum yield of impact ionization is performed on an n-channel metal-oxide-semiconductor field-effect transistor (n-MOSFET) by a carrier separation measurement. When the n-MOSFET is biased in accumulation, the carrier separation measurement demonstrates that the gate current mainly originates from the electrons injected into the underlying drain/source overlap regions. The measured substrate current is due to excess holes originating from the impact ionization of the injected electrons in the overlap regions. Therefore, the quantum yield in the overlap regions can be determined by the ratio of the substrate current to the gate current. It is well matched with the theoretical calculation of quantum yield. (C) 2004 American Institute of Physics.en_US
dc.language.isoen_USen_US
dc.titleEdge quantum yield in n-channel metal-oxide-semiconductor field-effect transistoren_US
dc.typeArticleen_US
dc.identifier.doi10.1063/1.1751627en_US
dc.identifier.journalJOURNAL OF APPLIED PHYSICSen_US
dc.citation.volume96en_US
dc.citation.issue3en_US
dc.citation.spage1743en_US
dc.citation.epage1744en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000222936900068-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000222936900068.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.