標題: Dynamics for discrete-time cellular neural networks
作者: Chen, SS
Shih, CW
應用數學系
Department of Applied Mathematics
關鍵字: cellular neural network;pattern formation;complete stability;homoclinic orbits;snap-back repeller;chaos
公開日期: 1-八月-2004
摘要: This presentation investigates the dynamics of discrete-time cellular neural networks (DT-CNN). In contrast to classical neural networks that are mostly gradient-like systems, DT-CNN possesses both complete stability and chaotic behaviours as different parameters are considered. An energy-like function which decreases along orbits of DT-CNN as well as the existence of a globally attracting set are derived. Complete stability can then be concluded, with further analysis on the sets on which the energy function is constant. The formations of saturated stationary patterns for DT-CNN are shown to be analogous to the ones in continuous-time CNN. Thus, DT-CNN shares similar properties with continuous-time CNN. By confirming the existence of snap-back repellers, hence transversal homoclinic orbits, we also conclude that DT-CNN with certain parameters exhibits chaotic dynamics, according to the theorem by Marotto.
URI: http://dx.doi.org/10.1142/S0218127404011053
http://hdl.handle.net/11536/26533
ISSN: 0218-1274
DOI: 10.1142/S0218127404011053
期刊: INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
Volume: 14
Issue: 8
起始頁: 2667
結束頁: 2687
顯示於類別:期刊論文


文件中的檔案:

  1. 000224603300005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。