完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Gau, HL | en_US |
dc.contributor.author | Wu, PY | en_US |
dc.date.accessioned | 2014-12-08T15:39:15Z | - |
dc.date.available | 2014-12-08T15:39:15Z | - |
dc.date.issued | 2004-05-01 | en_US |
dc.identifier.issn | 0024-3795 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.laa.2003.12.003 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/26807 | - |
dc.description.abstract | We show that, for any 2n+2 distinct points a(1), a'(1), a(2), a'(2),...,a(n+1), a'(n+1) (in this order) on the unit circle, there is an n-by-n matrix A. unique LIP to Unitary equivalence, which has norm one and satisfies the conditions that it has all its eigenvalues in the open unit disc, I-n-A*A has rank one and its numerical range is circumscribed by the two (n+1)-gons a(1)a(2)...a(n+1) and a'(1)a'(2)...a'(n+1). This generalizes the classical result of the existence of a conical Curve Circumscribed by two triangles which are already inscribed on another conical curve. (C) 2004 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | numerical range | en_US |
dc.subject | Ln-matrix | en_US |
dc.subject | polygon | en_US |
dc.title | Numerical range circumscribed by two polygons | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.laa.2003.12.003 | en_US |
dc.identifier.journal | LINEAR ALGEBRA AND ITS APPLICATIONS | en_US |
dc.citation.volume | 382 | en_US |
dc.citation.issue | en_US | |
dc.citation.spage | 155 | en_US |
dc.citation.epage | 170 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000220946200008 | - |
dc.citation.woscount | 8 | - |
顯示於類別: | 期刊論文 |