Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, HYen_US
dc.contributor.authorLee, YYen_US
dc.contributor.authorLo, PCen_US
dc.date.accessioned2014-12-08T15:39:29Z-
dc.date.available2014-12-08T15:39:29Z-
dc.date.issued2004-03-01en_US
dc.identifier.issn0165-1684en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.sigpro.2003.11.018en_US
dc.identifier.urihttp://hdl.handle.net/11536/26961-
dc.description.abstractThis paper presents a novel two-dimensional split-vector-radix fast-Fourier-transform (2D svr-FFT) algorithm. The modularizing feature of the 2D svr-FFT structure enables us to explore its characteristics by identifying the local structural property. Each local module is designated as a DFT (non-DFT) block if its output corresponds to DFT (non-DFT) values. The block attribute (DFT or non-DFT) directs the algorithm to construct the local module. We will show that the distribution of DFT blocks can be illustrated by the Sierpinski triangle-a class of fractals generated by IFS (iterated function system). The finding of the Sierpinski-triangle structural property enables us to actually implement the 2D svr-FFT algorithm. To the best of our knowledge, the 2D svr-FFT has never been realized in software. The computational efficiency of the proposed algorithm is considerably improved in comparison with that provided by Matlab. (C) 2003 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectDFTen_US
dc.subject2D split-vector-radix FFT (21) svr-FFT)en_US
dc.subjectfractalen_US
dc.subjectSierpinski triangleen_US
dc.titleA novel algorithm for computing the 2D split-vector-radix FFTen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.sigpro.2003.11.018en_US
dc.identifier.journalSIGNAL PROCESSINGen_US
dc.citation.volume84en_US
dc.citation.issue3en_US
dc.citation.spage561en_US
dc.citation.epage570en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000188962700010-
dc.citation.woscount4-
Appears in Collections:Articles


Files in This Item:

  1. 000188962700010.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.