Full metadata record
DC FieldValueLanguage
dc.contributor.authorTeo, LPen_US
dc.date.accessioned2014-12-08T15:39:54Z-
dc.date.available2014-12-08T15:39:54Z-
dc.date.issued2004en_US
dc.identifier.issn0021-7670en_US
dc.identifier.urihttp://hdl.handle.net/11536/27260-
dc.identifier.urihttp://dx.doi.org/10.1007/BF02789310en_US
dc.description.abstractWe extend Velling's approach and prove that the second variation of the spherical areas of a family of domains defines a Hermitian metric on the universal Teichmuller curve, whose pull-back to Diff +(S-1)/S-1 coincides with the Kirillov metric. We call this Hermitian metric the Velling-Kirillov metric. We show that the vertical integration of the square of the symplectic form of the Veiling-Kirillov metric on the universal Teichmuller curve is the symplectic form that defines the Weil-Petersson metric on the universal Teichmuller space. Restricted to a finite dimensional Teichmuller space, the vertical integration of the corresponding form on the Teichmuller curve is also the symplectic form that defines the Weil-Petersson metric on the Teichmuller space.en_US
dc.language.isoen_USen_US
dc.titleThe Velling-Kirillov metric on the universal Teichmuller curveen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/BF02789310en_US
dc.identifier.journalJOURNAL D ANALYSE MATHEMATIQUEen_US
dc.citation.volume93en_US
dc.citation.spage271en_US
dc.citation.epage307en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000225243900008-
dc.citation.woscount9-
Appears in Collections:Articles


Files in This Item:

  1. 000225243900008.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.