完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Teo, LP | en_US |
dc.date.accessioned | 2014-12-08T15:39:54Z | - |
dc.date.available | 2014-12-08T15:39:54Z | - |
dc.date.issued | 2004 | en_US |
dc.identifier.issn | 0021-7670 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/27260 | - |
dc.identifier.uri | http://dx.doi.org/10.1007/BF02789310 | en_US |
dc.description.abstract | We extend Velling's approach and prove that the second variation of the spherical areas of a family of domains defines a Hermitian metric on the universal Teichmuller curve, whose pull-back to Diff +(S-1)/S-1 coincides with the Kirillov metric. We call this Hermitian metric the Velling-Kirillov metric. We show that the vertical integration of the square of the symplectic form of the Veiling-Kirillov metric on the universal Teichmuller curve is the symplectic form that defines the Weil-Petersson metric on the universal Teichmuller space. Restricted to a finite dimensional Teichmuller space, the vertical integration of the corresponding form on the Teichmuller curve is also the symplectic form that defines the Weil-Petersson metric on the Teichmuller space. | en_US |
dc.language.iso | en_US | en_US |
dc.title | The Velling-Kirillov metric on the universal Teichmuller curve | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/BF02789310 | en_US |
dc.identifier.journal | JOURNAL D ANALYSE MATHEMATIQUE | en_US |
dc.citation.volume | 93 | en_US |
dc.citation.spage | 271 | en_US |
dc.citation.epage | 307 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000225243900008 | - |
dc.citation.woscount | 9 | - |
顯示於類別: | 期刊論文 |