Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lin, DH | en_US |
dc.date.accessioned | 2019-04-03T06:38:22Z | - |
dc.date.available | 2019-04-03T06:38:22Z | - |
dc.date.issued | 2003-11-01 | en_US |
dc.identifier.issn | 2469-9926 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1103/PhysRevA.68.052705 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/27436 | - |
dc.description.abstract | Levinson theorem for a charged particle moving in an arbitrary short-range potential and the field of the Aharonov-Bohm magnetic flux is established. The theorem constructs the relation delta(alpha)(0)=n(alpha)pi between the phase shift delta(alpha)(k) of scattering state at zero momentum and the total number n(alpha) of bound states for the alphath angular-momentum channel, where alpha=\m+mu(0)\ is a real number (m=integer, and mu(0)=-Phi/Phi(0) with Phi being the magnetic flux and Phi(0)=hc/e the fundamental flux quantum). The relation means that the phase shift at the threshold of zero momentum can serve as a counter for the bound states in the general angular-momentum channel. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Levinson theorem with the nonlocal Aharonov-Bohm effect | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1103/PhysRevA.68.052705 | en_US |
dc.identifier.journal | PHYSICAL REVIEW A | en_US |
dc.citation.volume | 68 | en_US |
dc.citation.issue | 5 | en_US |
dc.citation.spage | 0 | en_US |
dc.citation.epage | 0 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000186970900046 | en_US |
dc.citation.woscount | 1 | en_US |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.