Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, DHen_US
dc.date.accessioned2019-04-03T06:38:22Z-
dc.date.available2019-04-03T06:38:22Z-
dc.date.issued2003-11-01en_US
dc.identifier.issn2469-9926en_US
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevA.68.052705en_US
dc.identifier.urihttp://hdl.handle.net/11536/27436-
dc.description.abstractLevinson theorem for a charged particle moving in an arbitrary short-range potential and the field of the Aharonov-Bohm magnetic flux is established. The theorem constructs the relation delta(alpha)(0)=n(alpha)pi between the phase shift delta(alpha)(k) of scattering state at zero momentum and the total number n(alpha) of bound states for the alphath angular-momentum channel, where alpha=\m+mu(0)\ is a real number (m=integer, and mu(0)=-Phi/Phi(0) with Phi being the magnetic flux and Phi(0)=hc/e the fundamental flux quantum). The relation means that the phase shift at the threshold of zero momentum can serve as a counter for the bound states in the general angular-momentum channel.en_US
dc.language.isoen_USen_US
dc.titleLevinson theorem with the nonlocal Aharonov-Bohm effecten_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevA.68.052705en_US
dc.identifier.journalPHYSICAL REVIEW Aen_US
dc.citation.volume68en_US
dc.citation.issue5en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000186970900046en_US
dc.citation.woscount1en_US
Appears in Collections:Articles


Files in This Item:

  1. 5bf81e161bd907311c5ad5fdaaea5487.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.