完整后设资料纪录
DC 栏位语言
dc.contributor.authorLi, YMen_US
dc.contributor.authorHuang, KYen_US
dc.date.accessioned2014-12-08T15:40:53Z-
dc.date.available2014-12-08T15:40:53Z-
dc.date.issued2003-05-15en_US
dc.identifier.issn0010-4655en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0010-4655(02)00849-4en_US
dc.identifier.urihttp://hdl.handle.net/11536/27869-
dc.description.abstractIn this paper we present a novel computational method for calculating the heterojunction bipolar transistor (HBT) physical characteristics in the time domain. To calculate the HBT high frequency properties, the Gummel-Poon equivalent circuit model is applied to replace the HBT in the circuit and a set of governing ordinary differential equations (ODEs) is formulated. We directly decouple the system ODEs and solve each decoupled ODE with the monotone iterative method in the time domain. This solution methodology proposed here has been applied to semiconductor device simulation by us earlier, and we find this method for the HBT simulation has good accuracy and converges globally. Compared with the HSPICE circuit simulator results, our results present the accuracy, efficiency, and robustness of the method. (C) 2002 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectHBTen_US
dc.subjectODEen_US
dc.subjectcomputer simulationen_US
dc.subjectmonotone iterative methoden_US
dc.titleA novel numerical approach to heterojunction bipolar transistors circuit simulationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0010-4655(02)00849-4en_US
dc.identifier.journalCOMPUTER PHYSICS COMMUNICATIONSen_US
dc.citation.volume152en_US
dc.citation.issue3en_US
dc.citation.spage307en_US
dc.citation.epage316en_US
dc.contributor.department电子工程学系及电子研究所zh_TW
dc.contributor.department友讯交大联合研发中心zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.contributor.departmentD Link NCTU Joint Res Ctren_US
dc.identifier.wosnumberWOS:000182540100006-
dc.citation.woscount7-
显示于类别:Articles


文件中的档案:

  1. 000182540100006.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.