完整後設資料紀錄
DC 欄位語言
dc.contributor.authorMa, WJen_US
dc.contributor.authorWu, TMen_US
dc.contributor.authorHsieh, Jen_US
dc.contributor.authorChang, SLen_US
dc.date.accessioned2014-12-08T15:41:09Z-
dc.date.available2014-12-08T15:41:09Z-
dc.date.issued2003-04-01en_US
dc.identifier.issn0378-4371en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0378-4371(02)01796-Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/28001-
dc.description.abstractWe consider the Hessian matrices of simple liquid systems as a new type of random matrices. By numerically comparing the distribution of the nearest-neighbor level spacing of the eigenvalues with the Wigner's surmise, we round that the level statistics is akin to the generic Gaussian Orthogonal Ensemble (GOE), in spite of the constraints due to the summation rules and the presence of the correlation among the components inherited with the underlying spatial configuration. The distribution is in good agreement with the Wigner's prediction if only the extended eigenstates are considered. Indeed, our theoretical analysis shows that the ensemble of real symmetric matrices with full randomness. but constrained by the summation rules, is equivalent to the GOE with matrices of the rank lowered by the spatial dimension. (C) 2002 Published by Elsevier Science B.V.en_US
dc.language.isoen_USen_US
dc.subjectHessianen_US
dc.subjectrandom matricesen_US
dc.subjectGOEen_US
dc.subjectlevel statisticsen_US
dc.titleLevel statistics of Hessian matrices: random matrices with conservation constraintsen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.doi10.1016/S0378-4371(02)01796-Xen_US
dc.identifier.journalPHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONSen_US
dc.citation.volume321en_US
dc.citation.issue1-2en_US
dc.citation.spage364en_US
dc.citation.epage368en_US
dc.contributor.department物理研究所zh_TW
dc.contributor.departmentInstitute of Physicsen_US
dc.identifier.wosnumberWOS:000182057400039-
顯示於類別:會議論文


文件中的檔案:

  1. 000182057400039.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。