完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, CSen_US
dc.contributor.authorHung, SLen_US
dc.contributor.authorWen, CMen_US
dc.contributor.authorTu, TTen_US
dc.date.accessioned2014-12-08T15:41:20Z-
dc.date.available2014-12-08T15:41:20Z-
dc.date.issued2003-02-01en_US
dc.identifier.issn0098-8847en_US
dc.identifier.urihttp://dx.doi.org/10.1002/eqe.219en_US
dc.identifier.urihttp://hdl.handle.net/11536/28121-
dc.description.abstractThis work presents a novel procedure for identifying the dynamic characteristics of a building and diagnosing whether the building has been damaged by earthquakes, using a back-propagation neural network approach. The dynamic characteristics are directly evaluated from the freighting matrices of the neural network trained by observed acceleration responses and input base excitations. Whether the building is damaged under a large earthquake is assessed by comparing the modal parameters and responses for this large earthquake with those for a small earthquake that has not Caused this building any damage. The feasibility of the approach is demonstrated through processing the dynamic responses of a five-storey steel frame. subjected to different strengths of the Kobe earthquake, in shaking table tests. Copyright (C) 2002 John Wiley Sons, Ltd.en_US
dc.language.isoen_USen_US
dc.subjectsystem identificationen_US
dc.subjectdamage assessmenten_US
dc.subjectneural networken_US
dc.subjectearthquake responsesen_US
dc.titleA neural network approach for structural identification and diagnosis of a building from seismic response dataen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/eqe.219en_US
dc.identifier.journalEARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICSen_US
dc.citation.volume32en_US
dc.citation.issue2en_US
dc.citation.spage187en_US
dc.citation.epage206en_US
dc.contributor.department土木工程學系zh_TW
dc.contributor.departmentDepartment of Civil Engineeringen_US
dc.identifier.wosnumberWOS:000180651500002-
dc.citation.woscount26-
顯示於類別:期刊論文


文件中的檔案:

  1. 000180651500002.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。