Full metadata record
DC FieldValueLanguage
dc.contributor.authorCho, HJen_US
dc.contributor.authorHsu, LYen_US
dc.date.accessioned2014-12-08T15:41:38Z-
dc.date.available2014-12-08T15:41:38Z-
dc.date.issued2002-12-16en_US
dc.identifier.issn0020-0190en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0020-0190(02)00310-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/28310-
dc.description.abstractAssume that m and n are positive even integers with n greater than or equal to 4. The honeycomb rectangular torus HReT(m,n) is recognized as another attractive alternative to existing torus interconnection networks in parallel and distributed applications. It is known that any HReT(m, n) is a 3-regular bipartite graph. We prove that any HReT(m, n) - e is hamiltonian for any edge e is an element of E(HReT(m, n)). Moreover, any HReT(m, n) - F is hamiltonian for any F = {a, b} with a is an element of A and b is an element of B where A and B are the bipartition of HReT(m, n), if n greater than or equal to 6 or m = 2. (C) 2002 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectinterconnection networksen_US
dc.subjecthoneycomb torusen_US
dc.subjectHamiltonian cycleen_US
dc.subjectring embeddingen_US
dc.titleRing embedding in faulty honeycomb rectangular torusen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0020-0190(02)00310-1en_US
dc.identifier.journalINFORMATION PROCESSING LETTERSen_US
dc.citation.volume84en_US
dc.citation.issue5en_US
dc.citation.spage277en_US
dc.citation.epage284en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.identifier.wosnumberWOS:000178849300008-
dc.citation.woscount15-
Appears in Collections:Articles


Files in This Item:

  1. 000178849300008.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.