Title: | Fault-tolerant hamiltonicity of twisted cubes |
Authors: | Huang, WT Tan, JJM Hung, CN Hsu, LH 資訊工程學系 Department of Computer Science |
Keywords: | hamiltonian;hamiltonian connected;fault-tolerant;twisted cube |
Issue Date: | 1-Apr-2002 |
Abstract: | The twisted cube TQ(n), is derived by changing some connection of hypercube Q(n) according to specific rules. Recently, many topological properties of this variation cube are studied. In this paper, we consider a faulty twisted n-cube with both edge and/or node faults. Let F be a subset of V(TQ(n)) boolean AND E(TQ(n)), we prove that TQ(n) - F remains hamiltonian if F less than or equal to n - 2. Moreover, we prove that there exists a hamiltonian path in TQ, - F joining any two vertices u, v in V(TQ(n)) - F if F less than or equal to n-3. The result is optimum in the sense that the fault-tolerant hamiltonicity (fault-tolerant hamiltonian connectivity respectively) of TQn is at most n-2 (n-3 respectively). (C) 2002 Elsevier Science (USA). |
URI: | http://dx.doi.org/10.1006/jpdc.2001.1813 http://hdl.handle.net/11536/28880 |
ISSN: | 0743-7315 |
DOI: | 10.1006/jpdc.2001.1813 |
Journal: | JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING |
Volume: | 62 |
Issue: | 4 |
Begin Page: | 591 |
End Page: | 604 |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.