标题: | A neural fuzzy network for word information processing |
作者: | Lin, CT Duh, FB Liu, DJ 电控工程研究所 Institute of Electrical and Control Engineering |
公开日期: | 1-四月-2002 |
摘要: | A neural fuzzy system learning with fuzzy training data is proposed in this study. The system is able to process and learn numerical information as well as word information. At first, we propose a basic structure of five-layered neural network for the connectionist realization of a fuzzy inference system. The connectionist structure can house fuzzy logic rules and membership functions for fuzzy inference. The inputs, outputs, and weights of the proposed network can be fuzzy numbers of any shape. Also they can be hybrid of fuzzy numbers and numerical numbers through the use of fuzzy singletons. Based on interval arithmetics, a fuzzy supervised learning algorithm is developed for the proposed system. It extends the normal supervised learning techniques to the learning problems where only word teaching signals are available. The fuzzy supervised learning scheme can train the proposed system with desired fuzzy input-output pairs. An experimental system is constructed to illustrate the performance and applicability of the proposed scheme. (C) 2002 Elsevier Science B.V. All rights reserved. |
URI: | http://dx.doi.org/10.1016/S0165-0114(01)00151-8 http://hdl.handle.net/11536/28921 |
ISSN: | 0165-0114 |
DOI: | 10.1016/S0165-0114(01)00151-8 |
期刊: | FUZZY SETS AND SYSTEMS |
Volume: | 127 |
Issue: | 1 |
起始页: | 37 |
结束页: | 48 |
显示于类别: | Conferences Paper |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.