完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHung, SLen_US
dc.contributor.authorKao, CYen_US
dc.date.accessioned2014-12-08T15:42:49Z-
dc.date.available2014-12-08T15:42:49Z-
dc.date.issued2002-02-01en_US
dc.identifier.issn0098-8847en_US
dc.identifier.urihttp://dx.doi.org/10.1002/eqe.106en_US
dc.identifier.urihttp://hdl.handle.net/11536/29034-
dc.description.abstractThis work presents a novel neural network-based approach to detect structural damage. The proposed approach comprises two steps. The first step, system identification, involves using neural system identification networks (NSINs) to identify the undamaged and damaged states of a structural system. The partial derivatives of the outputs with respect to the inputs of the NSIN, which identifies the system in a certain undamaged or damaged state, have a negligible variation with different system errors. This loosely defined unique property enables these partial derivatives to quantitatively indicate system damage from the model parameters. The second step, structural damage detection, involves using the neural damage detection network (NDDN) to detect the location and extent of the structural damage. The input to the NDDN is taken as the aforementioned partial derivatives of NSIN, and the output of the NDDN identifies the damage level for each member in the structure. Moreover, SDOF and MDOF examples are presented to demonstrate the feasibility of using the proposed method for damage detection of linear structures. Copyright (C) 2001 John Wiley Sons, Ltd.en_US
dc.language.isoen_USen_US
dc.subjectartificial neural network (ANN)en_US
dc.subjectpartial derivative form of ANNen_US
dc.subjectsystem identificationen_US
dc.subjectstructural damage detectionen_US
dc.titleStructural damage detection using the optimal weights of the approximating artificial neural networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/eqe.106en_US
dc.identifier.journalEARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICSen_US
dc.citation.volume31en_US
dc.citation.issue2en_US
dc.citation.spage217en_US
dc.citation.epage234en_US
dc.contributor.department土木工程學系zh_TW
dc.contributor.departmentDepartment of Civil Engineeringen_US
dc.identifier.wosnumberWOS:000173436000002-
dc.citation.woscount23-
顯示於類別:期刊論文


文件中的檔案:

  1. 000173436000002.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。