標題: | Robot motion similarity analysis using an FNN learning mechanism |
作者: | Young, KY Wang, JK 電控工程研究所 Institute of Electrical and Control Engineering |
關鍵字: | robot learning control;learning space complexity;motion similarity analysis;fuzzy neural network |
公開日期: | 1-Dec-2001 |
摘要: | Learning controllers are usually subordinate to conventional controllers in governing multiple-joint robot motion, in spite of their ability to generalize, because learning space complexity and motion variety require them to consume excessive amount of memory when they are employed as major roles in motion governing. We propose using a fuzzy neural network (FNN) to learn and analyze robot motions so that they can be classified according to similarity. After classification, the learning controller can then be designed to govern robot motions according to their similarities without consuming excessive memory resources. (C) 2001 Elsevier Science B.V. All rights reserved. |
URI: | http://dx.doi.org/10.1016/S0165-0114(00)00081-6 http://hdl.handle.net/11536/29238 |
ISSN: | 0165-0114 |
DOI: | 10.1016/S0165-0114(00)00081-6 |
期刊: | FUZZY SETS AND SYSTEMS |
Volume: | 124 |
Issue: | 2 |
起始頁: | 155 |
結束頁: | 170 |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.