Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, TKen_US
dc.contributor.authorTan, JJMen_US
dc.contributor.authorHsu, LHen_US
dc.contributor.authorSung, TYen_US
dc.date.accessioned2014-12-08T15:44:17Z-
dc.date.available2014-12-08T15:44:17Z-
dc.date.issued2001-01-31en_US
dc.identifier.issn0020-0190en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0020-0190(00)00147-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/29895-
dc.description.abstractIn this paper, we first present a new variation of hypercubes, denoted by SQ(n) .SQ(n) is obtained from Q(n) by changing some links. Sa, is also an n-regular n-connected graph but of diameter about n/4. Then, we present a generalization of Se,. For any positive integer g, we can construct an n-dimensional generalized shuffle-cube with 2(n) vertices which is n-regular and n-connected. However its diameter can be about n/g if we consider g as a constant. (C) 2001 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjecthypercubesen_US
dc.subjectdiameteren_US
dc.subjectconnectivityen_US
dc.subjectinterconnection networken_US
dc.titleThe shuffle-cubes and their generalizationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0020-0190(00)00147-2en_US
dc.identifier.journalINFORMATION PROCESSING LETTERSen_US
dc.citation.volume77en_US
dc.citation.issue1en_US
dc.citation.spage35en_US
dc.citation.epage41en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000166574100007-
dc.citation.woscount12-
Appears in Collections:Articles


Files in This Item:

  1. 000166574100007.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.