Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, TK | en_US |
dc.contributor.author | Tan, JJM | en_US |
dc.contributor.author | Hsu, LH | en_US |
dc.contributor.author | Sung, TY | en_US |
dc.date.accessioned | 2014-12-08T15:44:17Z | - |
dc.date.available | 2014-12-08T15:44:17Z | - |
dc.date.issued | 2001-01-31 | en_US |
dc.identifier.issn | 0020-0190 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/S0020-0190(00)00147-2 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/29895 | - |
dc.description.abstract | In this paper, we first present a new variation of hypercubes, denoted by SQ(n) .SQ(n) is obtained from Q(n) by changing some links. Sa, is also an n-regular n-connected graph but of diameter about n/4. Then, we present a generalization of Se,. For any positive integer g, we can construct an n-dimensional generalized shuffle-cube with 2(n) vertices which is n-regular and n-connected. However its diameter can be about n/g if we consider g as a constant. (C) 2001 Elsevier Science B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | hypercubes | en_US |
dc.subject | diameter | en_US |
dc.subject | connectivity | en_US |
dc.subject | interconnection network | en_US |
dc.title | The shuffle-cubes and their generalization | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/S0020-0190(00)00147-2 | en_US |
dc.identifier.journal | INFORMATION PROCESSING LETTERS | en_US |
dc.citation.volume | 77 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 35 | en_US |
dc.citation.epage | 41 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000166574100007 | - |
dc.citation.woscount | 12 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.