Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, CSen_US
dc.contributor.authorTseng, CHen_US
dc.date.accessioned2014-12-08T15:44:19Z-
dc.date.available2014-12-08T15:44:19Z-
dc.date.issued2001-01-01en_US
dc.identifier.issn0898-1221en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0898-1221(01)85005-7en_US
dc.identifier.urihttp://hdl.handle.net/11536/29935-
dc.description.abstractIn this paper, a new multiplier method that decomposes variable space into decomposed spaces is introduced. This method allows constrained minimization problems to be decomposed into subproblems. A potential constraint strategy that uses only part of the constraint set in the decomposed-space subproblems is also presented to increase the efficiency of this new space-decomposition multiplier method. Three examples are given to demonstrate this method and the potential constraint strategy. (C) 2001 Elsevier Science Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectconstrained minimizationen_US
dc.subjectdecomposition methoden_US
dc.subjectmultiplier methoden_US
dc.titleSpace-decomposition multiplier method for constrained minimization problemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0898-1221(01)85005-7en_US
dc.identifier.journalCOMPUTERS & MATHEMATICS WITH APPLICATIONSen_US
dc.citation.volume41en_US
dc.citation.issue1-2en_US
dc.citation.spage51en_US
dc.citation.epage62en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000166530500004-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000166530500004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.