Full metadata record
DC FieldValueLanguage
dc.contributor.authorHo, WJen_US
dc.contributor.authorChang, WTen_US
dc.date.accessioned2014-12-08T15:46:04Z-
dc.date.available2014-12-08T15:46:04Z-
dc.date.issued1999-11-01en_US
dc.identifier.issn1053-587Xen_US
dc.identifier.urihttp://dx.doi.org/10.1109/78.796432en_US
dc.identifier.urihttp://hdl.handle.net/11536/30982-
dc.description.abstractFor the complex short time-varying signals, a high-order predictor does not always yield good performance. For this, we investigate the use of a short-order adaptive predictor. Since the maximally flat filters are the optimal predictors for polynomial signal prediction, the adaptation is based on the combination of a set of maximally flat filters. For compression efficiency, the dynamic ranges of the weighting variables are specially considered. For this, based on the Bernstein filters, another form to represent the weighting variables is used. These two sets of weighting coefficients can be transformed into each other with a simple linear transform. Thus, the adaptation can be made in both the time domain and the frequency domain. For block-based image coding, the least square criterion is used to derive the weighting coefficients. Experimental results show that the adaptive predictor performs better than the SSP transform, the median edge detector (MED), and the gradient adjusted predictor (GAP).en_US
dc.language.isoen_USen_US
dc.subjectBernstein polynomialen_US
dc.subjectfilter banken_US
dc.subjectlifting schemeen_US
dc.subjectmaximally flat filteren_US
dc.titleAdaptive predictor based on maximally flat halfband filter in lifting schemeen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/78.796432en_US
dc.identifier.journalIEEE TRANSACTIONS ON SIGNAL PROCESSINGen_US
dc.citation.volume47en_US
dc.citation.issue11en_US
dc.citation.spage2965en_US
dc.citation.epage2977en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000083217500006-
dc.citation.woscount5-
Appears in Collections:Articles


Files in This Item:

  1. 000083217500006.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.