Full metadata record
DC FieldValueLanguage
dc.contributor.authorHung, CNen_US
dc.contributor.authorHsu, LHen_US
dc.contributor.authorSung, TYen_US
dc.date.accessioned2014-12-08T15:46:08Z-
dc.date.available2014-12-08T15:46:08Z-
dc.date.issued1999-10-29en_US
dc.identifier.issn0020-0190en_US
dc.identifier.urihttp://hdl.handle.net/11536/31025-
dc.description.abstractThe token ring topology is required in token passing approach used in distributed operating systems. Fault tolerance is also required in the designs of distributed systems. Note that 1-fault-tolerant design for token rings is equivalent to design of 1-Hamiltonian graphs. This paper introduces a new family of graphs called Christmas tree, denoted by CT(s). The graph CT(s) is a 3-regular, planar, 1-Hamiltonian, and Hamiltonian-connected graph. The number of nodes in CT(s) is 3.2(s) - 2. Its diameter is 1 if s = 1, 3 if s = 2, and 2s if s greater than or equal to 3. (C) 1999 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectdiameteren_US
dc.subjectHamiltonianen_US
dc.subject1-Hamiltonianen_US
dc.subjectHamiltonian-connecteden_US
dc.subjectfault-toleranten_US
dc.subjecttoken ringsen_US
dc.titleChristmas tree: A versatile 1-fault-tolerant design for token ringsen_US
dc.typeArticleen_US
dc.identifier.journalINFORMATION PROCESSING LETTERSen_US
dc.citation.volume72en_US
dc.citation.issue1-2en_US
dc.citation.spage55en_US
dc.citation.epage63en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000084160100008-
dc.citation.woscount8-
Appears in Collections:Articles


Files in This Item:

  1. 000084160100008.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.