Full metadata record
DC FieldValueLanguage
dc.contributor.authorShiau, JJHen_US
dc.contributor.authorChiang, CTen_US
dc.contributor.authorHung, HNen_US
dc.date.accessioned2014-12-08T15:46:15Z-
dc.date.available2014-12-08T15:46:15Z-
dc.date.issued1999-09-01en_US
dc.identifier.issn0748-8017en_US
dc.identifier.urihttp://hdl.handle.net/11536/31113-
dc.identifier.urihttp://dx.doi.org/10.1002/(SICI)1099-1638(199909/10)15:5<369en_US
dc.description.abstractThe usual practice of judging process capability by evaluating point estimates of some process capability indices has a flaw that there is no assessment on the error distributions of these estimates. However, the distributions of these estimates are usually so complicated that it is very difficult to obtain good interval estimates. In this paper we adopt a Bayesian approach to obtain an interval estimation, particularly for the index C(pm). The posterior probability p that the process under investigation is capable is derived; then the credible interval, a Bayesian analogue of the classical confidence interval, can be obtained. We claim that the process is capable if all the points in the credible interval are greater than the pre-specified capability level omega, say 1.33. To make this Bayesian procedure very easy for practitioners to implement on manufacturing floors, we tabulate the minimum values of (C) over cap(pm)/omega for which the posterior probability p reaches the desirable level, say 95%. For the special cases where the process mean equals the target value for C(pm) and equals the midpoint of the two specification limits for C(pk). the procedure is even simpler; only chi-square tables are needed. Copyright (C) 1999 John Wiley & Sons, Ltd.en_US
dc.language.isoen_USen_US
dc.subjectprocess capability indicesen_US
dc.subjectqualityen_US
dc.subjectBayesian approachen_US
dc.subjectconfidence intervalen_US
dc.subjectcredible intervalen_US
dc.subjectprioren_US
dc.subjectposterioren_US
dc.titleA Bayesian procedure for process capability assessmenten_US
dc.typeArticleen_US
dc.identifier.doi10.1002/(SICI)1099-1638(199909/10)15:5<369en_US
dc.identifier.journalQUALITY AND RELIABILITY ENGINEERING INTERNATIONALen_US
dc.citation.volume15en_US
dc.citation.issue5en_US
dc.citation.spage369en_US
dc.citation.epage378en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000083481200005-
dc.citation.woscount28-
Appears in Collections:Articles


Files in This Item:

  1. 000083481200005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.