標題: A global optimization method for nonconvex separable programming problems
作者: Li, HL
Yu, CS
資訊管理與財務金融系 註:原資管所+財金所
Department of Information Management and Finance
關鍵字: goal programming;piecewise linear function;separable programming
公開日期: 1-Sep-1999
摘要: Conventional methods of solving nonconvex separable programming (NSP) problems by mixed integer programming methods requires adding numerous 0-1 variables. In this work, we present a new method of deriving the global optimum of a NSP program using less number of 0-1 variables. A separable function is initially expressed by a piecewise linear function with summation of absolute terms. Linearizing these absolute terms allows us to convert a NSP problem into a linearly mixed 0-1 program solvable for reaching a solution which is extremely close to the global optimum. (C) 1999 Elsevier Science B.V. All rights reserved.
URI: http://dx.doi.org/10.1016/S0377-2217(98)00243-4
http://hdl.handle.net/11536/31124
ISSN: 0377-2217
DOI: 10.1016/S0377-2217(98)00243-4
期刊: EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
Volume: 117
Issue: 2
起始頁: 275
結束頁: 292
Appears in Collections:Articles


Files in This Item:

  1. 000081318000007.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.