Full metadata record
DC FieldValueLanguage
dc.contributor.author陳俊升en_US
dc.contributor.authorChun-Sheng Chenen_US
dc.contributor.author張志永en_US
dc.contributor.authorJyh-Yeong Changen_US
dc.date.accessioned2014-12-12T01:14:30Z-
dc.date.available2014-12-12T01:14:30Z-
dc.date.issued2007en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009512579en_US
dc.identifier.urihttp://hdl.handle.net/11536/38286-
dc.description.abstract利用固定攝影機拍攝的串流影像資訊於前景物體抽取是一個很典型的方法。在一般前、後景色彩深淺差別大時,可以簡單的使用亮度的資訊將前後景分離,但當前後景色彩接近時,例如; 當辨識的目標穿著和背景相似的衣服時,若只使用灰階影像並無法將完整的前景資訊分離,我們曾使用HSV色彩空間加入像素點色彩成分的考慮建立背景模型做顏色的補償,達到前、後景的分離,且能對陰影的問題加以消除改進。然而使用HSV色彩空間會遇到色調一些不穩定的問題,所以我們在色調不穩定的區域加以限制,以增加抽取前景影像的準確性,但對於某些情況,例如;背景為米白色而前景目標穿著粉紅色衣服時,在HSI系統對前景物體抽取的準確性提升效果有限。 本論文,我們建立一個內嵌在CIELAB色彩空間的統計性背景模型來做前景物體抽取,這個模型大幅的提高前景物體抽取的靈敏度。在HSV的系統與我們新的前景抽取系統比較,實驗證明,CIELAB其正確率從原來的75.62%改善為87.88%。zh_TW
dc.description.abstractBackground subtraction is a typical method used to extract foreground object in video streams taken from a static camera. When the foreground color is different from the background color, the foreground subject can be extracted easily by the luminance component. When the foreground color is similar to the background color, we cannot extract the foreground image completely by the luminance component. To solve this, we used to utilize the HSV color space to build the background model to do color compensation, in line with similar spirit of W4 segmentation algorithm. This approach can not only extract foreground image well but also be helpful to shadow removal. However, H and S components are not consistently reliable in some situations. For example, HSI system does not detect foreground well when the object wears pink clothes when in ivory background. In this thesis, we build a statistical background modeling embedded in CIELAB color space for foreground object extraction. By the use of color difference formula in CIELAB space, so that the sensitivity of foreground object extraction can be raised evidently. In comparison with HSV based scheme and our new foreground extraction scheme, the CIELAB improves the segmentation accuracy from 75.62% to 87.88%.en_US
dc.language.isoen_USen_US
dc.subject前景抽取zh_TW
dc.subject背景模型zh_TW
dc.subjectCIELABen_US
dc.subjectBackground Modelingen_US
dc.title適用於低色彩對比前景抽取之CIELAB色彩空間背景模型zh_TW
dc.titleCIELAB Color Space Based Background Modeling for Low Color Contrast Foreground Extractionen_US
dc.typeThesisen_US
dc.contributor.department電控工程研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 257901.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.