標題: 航空公司客機艙位規劃之研究
The study on determining the seat allocation of aircraft cabin for airlines
作者: 吳維真
Wei-Jen Wu
許巧鶯
Chaug-Ing Hsu
運輸與物流管理學系
關鍵字: 艙位配置;機型指派;動態需求市場;aircraft cabin interior design;seat allocation;dynamic market changes
公開日期: 2007
摘要: 航空公司營收大小深受其所提供之服務是否能捕捉市場需求的動態變化。航空客運業同時存在著不受高額票價影響,喜好奢華服務的商務旅客和有預算限制並追求廉價機票的旅遊旅客,不同旅次目的之旅客對各不同艙等選擇的結果以及航線旅次目的組成結構密切影響了艙等座位利用率,進一步決定航空公司的營收以及成本。由於航機可利用之樓地板面積的限制,艙等數、各艙等座位大小和數量實為一取捨關係,航空公司在規劃期間必須考量未來各航機營運年間航線市場變動情況,規劃機艙最適內部設計,以提昇整體的承載率,獲得最佳期望收益;除了艙位規劃外,因不同航線的成長率隨著起迄兩地的市場特性、旅客需求而有所變化,故如何在適當航線安排適當機型飛航亦相當重要。航空公司在進行營運規劃時,如何考慮起迄對航空運量和航線旅次結構的動態變化,並以供需互動角度考量機隊規劃、艙等座位配置對航空公司收益和營運成本的影響,制訂最適之機隊規劃和機艙內部空間設計實為一重要課題。 本研究拓展過去文獻以短期角度探討機艙座位管理問題,以長期角度進行艙等內部空間規劃,探討在各級艙等旅客運量成長幅度不同的航線下,各艙等之間的權衡取捨關係,期能提供航空公司於機艙座位管理之決策彈性。本研究應用解析性方法和數學規劃模式,深入考慮旅客需求面和航空公司供給面特性以及兩者間之供需互動關係,進行航空公司艙等需求量總計、機隊規劃以及機艙內部規劃設計。於需求面,將各艙等旅客需求視為外生,先根據各航線旅客運量歷史資料,以灰色拓撲模式預測各航線於規劃時程的未來年運量,再藉由各航線所屬國之經貿資料,估計各航線於不同艙等之旅客需求量;於供給面,構建能反映艙等規劃、各艙等座位利用率、營運航線和機隊規劃之航空公司營運成本函數。繼而,結合供給和需求面,以航空公司總規劃期間利潤最大化為目標,構建能反映供需之數學規劃模式,分析旅客動態變化、旅客需求和航空公司艙等規劃策略對成本的影響,求解航空公司最適機隊規劃和艙等內部空間規劃設計。 最後,本研究針對一實際航空公司相關資料進行實證分析,以驗證本研究模式在實務應用上之可行性與模式發展之潛力。研究結果顯示單一架新航機於規劃時程傾向營運於特定航線,不易出現隨時程更迭而替換航線執勤之情形;在選擇優先配置何種艙等之座位上,影響決策權衡主要之因素為各艙等的座位面積比例與利潤比例。本研究在學術貢獻上可補過去文獻之不足,亦期能提供相關問題供其他學術研究之參考。而在實務上,本研究結果可提供航空公司相關機隊規劃和機艙內部規劃設計之參考,及研擬相關行銷策略之參考。
The ability to match aircraft cabin service to dynamic market changes is one of the crucial factors deciding the profitability of an airline. There exist business travelers who prefer and are able to afford the high fare of luxurious first-class cabin as well as tourism travelers seeking for cheap air tickets due to budget limits. The cabin-class choice from different travelers and trip purpose on the route determine seat utilization, thereby the revenue and total cost of the airline. Because of the limited cabin floor area, there is a trade-off among cabin class number, the size, and the amount of the seat of different classes. The expected revenue of an airline is influenced by the passenger market characteristics and the aircraft ! cabin interior design. Though large aircraft is flexible in cabin interior design, the airline must explore the growth rate of routes, changes in market composition and passenger demand when assigning the fleet to each route. A profit-maximizing airline must investigate the impacts of dynamic economic changes and trip purpose compositions of various origin-destination (OD) pairs on the cabin seat allocation and trade-off between costs of providing the service and the revenue accordingly generated from different cabin seat allocation. This study aims to explore the interior design problem of aircraft cabin from a long-term perspective. On the demand side, this study applies grey forecasting model to predict the demand of each class for each year. On the supply side, the study considers the airline operating cost as related to fleet planning, cabin seat allocation and utilization. A mathematical programming model is further formulated to determine the optimal fleet planning and cabin interior design including the number of cabin classes, the size, and the number of seats for each class. The objective function aims to maximize the total profit of a given airline taking demand-supply interactions into account. Finally, a case study is provided to illustrate the results and the application of the model. The results show that a new aircraft tends to operate only on a single route for most of service period, and the main factor which significantly affects the decisions on allocating seats for different classes of cabin is the trade-off between the size of the area allocated for and expected profit generated from each class. The results of the model illustrate an integrated solution associated with airline fleet management and cabin design in a dynamic and competitive environment.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009532503
http://hdl.handle.net/11536/39105
Appears in Collections:Thesis


Files in This Item:

  1. 250301.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.