標題: 雙重通路複合式協同過濾之產品推薦研究
A Study of Hybrid Collaborative Filtering for Product Recommendation in Dual Channels
作者: 陳鈺婷
Yu-Ting Chen
劉敦仁
Duen-Ren Liu
資訊管理研究所
關鍵字: 多重通路;協同過濾推薦方法;K近鄰;Multi-Channel;Collaborative Filtering Recommendation;KNN
公開日期: 2007
摘要: 在網際網路便捷的現代社會,企業逐漸朝向多重通路(Multi-Channel)行銷模式發展,顧客能選擇自己較喜好的通路來採購商品。企業若能整合與分析各通路的交易記錄,便能為顧客提供個人化的推薦服務,並提升顧客忠誠度。 為降低交易記錄稀疏問題(Data Sparsity),本研究提出一個雙重通路複合式協同過濾(CF)推薦方法,整合顧客在不同通路下的交易記錄,並基於Nearst-Neighbor的協同過濾推薦方法,結合User-based CF與Item-based CF進行產品推薦,以提升推薦品質。實驗結果顯示,本研究所提之雙重通路複合式協同過濾法能提升產品推薦品質。
The convenience of Internet makes enterprises employ Multi-Channel to develop the marketing models. Customers can choose prefer channels to make purchases from enterprises. Integrating and analyzing transactions from Multi-Channel can provide personal recommendation to increase customer loyalty. To reduce the issue of data sparsity in transaction records, this research proposes a Hybrid Collaborative Filtering (CF) in dual channels for product recommendation. The proposed method employs Nearst-Neighbor approach by integrating the User-based CF and Item-based CF. The experimental results show that the proposed hybrid approach in dual channels can improve recommendation quality.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009534508
http://hdl.handle.net/11536/39192
Appears in Collections:Thesis