完整後設資料紀錄
DC 欄位語言
dc.contributor.authorCHANG, GJen_US
dc.date.accessioned2014-12-08T15:05:23Z-
dc.date.available2014-12-08T15:05:23Z-
dc.date.issued1991en_US
dc.identifier.issn0911-0119en_US
dc.identifier.urihttp://hdl.handle.net/11536/3921-
dc.identifier.urihttp://dx.doi.org/10.1007/BF01787637en_US
dc.description.abstractIn a graph G = (V, E), the eccentricity e(S) of a subset S is contained in or equal to V is max(x is-an-element-of V) min(y is-an-element-of S) d(x, y); and e(x) stands for e({x}). The diameter of G is max(x is-an-element-of V) e(x), the radius r(G) of G is min(x is-an-element-of V) e(x) and the clique radius cr(G) is min e(K) where K runs over all cliques. The center of G is the subgraph induced by C(G), the set of all vertices x with e(x) = r(G). A clique center is a clique K with e(K) = cr(G). In this paper, we study the problem of determining the centers of chordal graphs. It is shown that the center of a connected chordal graph is distance invariant, biconnected and of diameter no more than 5. We also prove that 2cr(G) less-than-or-equal-to d(G) less-than-or-equal-to 2cr(G) + 1 for any connected chordal graph G. This result implies a characterization of a biconnected chordal graph of diameter 2 and radius 1 to be the center of some chordal graph.en_US
dc.language.isoen_USen_US
dc.titleCENTERS OF CHORDAL GRAPHSen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/BF01787637en_US
dc.identifier.journalGRAPHS AND COMBINATORICSen_US
dc.citation.volume7en_US
dc.citation.issue4en_US
dc.citation.spage305en_US
dc.citation.epage313en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1991GW77700001-
dc.citation.woscount7-
顯示於類別:期刊論文


文件中的檔案:

  1. A1991GW77700001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。