標題: | 標籤式電腦程式同儕互評 Programming Peer Assessment Using Tagging Approach |
作者: | 劉怡利 Yi-Li Liu 曾憲雄 Shian-Shyong Tseng 多媒體工程研究所 |
關鍵字: | 電腦程式同儕互評;同儕互評;電腦程式學習;computer program peer assessment;peer assessment;computer program learning |
公開日期: | 2007 |
摘要: | 程式技能包含,程式撰寫、程式追蹤、測試及除錯,是程式設計師應該具備重要的能力。為了讓程式的初學者於初學階段能知道自己的程式迷失概念,程式設計的課程中會有程式的評量活動來幫助學生學習。但是因為傳統的程式評量活動,例如、上機考試,以程式執行的對錯來評量評分,這使得程式有錯卻又不知錯誤所在的學生來說成效不佳;並且學生程式追蹤、測試及除錯的能力在傳統的評量中也不易被評量。在本篇論文提出一個新的程式評量方法,用同儕互評的方式讓學生在互評活動中找尋同學的程式錯誤,使得撰寫程式的同學可以得到除了執行結果外的評論;而評論的同學除了在評量的過程中練習到程式追蹤、測試及除錯外,評論的資料也會被記錄及分析,因此學生的程式技能可以在此評量活動中多方的得到檢測,學生的學習狀態及結果也可以作為老師實施補救教學的參考。由我們的實驗得知,學生的程式迷失概念可以被我們的評量方法找出來,並且我們於評量活動中提出的追蹤指引可以幫助學生學習如何追蹤、測試及除錯,讓學生的程式技能得到改善。 Most of the programming novices feel hard to learn programming skills, such as coding, tracing, debugging and testing. To help them learn programming well, computer program assessments which can find out the novices’ programming misconception have been proposed. Although traditional computer program assessment can score the student’s program by executing the program with test cases, it is ineffective because the novices’ programming misconception in the coding mistakes and tracing mistakes can not be found out. In the peer assessment activity, the learners can discuss their works with others to get the comments about his/her work together with the score. This thesis proposes a new computer program peer assessment to help the novices easily find out their programming misconception in the coding mistakes and tracing mistakes. An experiment has been done to evaluate the effectiveness of the new assessment. We may conclude that the process is useful to find out the learner’s coding and tracing problems, and that the tracing guidance is useful to direct the novice to trace peer’s program. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009557525 http://hdl.handle.net/11536/39677 |
Appears in Collections: | Thesis |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.