标题: 具演化式结构学习能力之类神经网路及其预测之应用
Neural Network with Evolutionary Structure Learning and Its Prediction Application
作者: 杨世宏
陈永平
电控工程研究所
关键字: 演化计算;类神经网路;结构学习;evolutionary computation;neural network;structure learning
公开日期: 2011
摘要: 本论文提出一以前馈式类神经网路辅助之灰色模型及其相关的线上参数学习与结构学习演算法,此模型采用一阶单变数灰色模型来预测讯号,再使用前馈式类神经网路补偿灰色模型的预测误差,此外,本论文提出一线上批次训练法来即时更新类神经网路的权重值,于是,此模型可以执行预测且持续地适应动态的讯号变化。为了有效地设计此模型的结构,本论文提出一种以神经元为基础的结构学习,称为共生结构学习演算法,来建立类神经网路的拓墣结构,此演算法首先建构一神经元族群,再由神经元族群建立类神经网路族群,由于神经元族群里的神经元包含双曲线正切与线性活化函数,此演算法能任意且轻易地发展串联式网路与前馈式网路,此演算法进一步根据共生进化的概念,在神经元族群里执行神经元交配与突变,其所发展的前馈式类神经网路辅助之灰色模型将执行讯号预测且持续地以线上批次训练法调适模型于环境中。另一方面,本论文提出一种以网路为基础的结构学习,称为演化式建构与修剪演算法,用演化的方式结合建构与修剪的概念,来设计类神经网路的拓墣结构。此演算法从一群具有最简单结构的类神经网路开始,即一群只有一颗连接单一输入单元的隐藏层神经元的类神经网路,此演算法采用网路交配与突变来增加隐藏层神经元以及链结,用以提升类神经网路的讯号处理能力,此外,本论文提出一以丛集为基础之修剪法用随机的方式来除去不重要的神经元,也提出一以年龄为基础之生存者选择法来移除较老且可能具有复杂结构的类神经网路,接着引进新的且具有最简单结构的类神经网路。数值模拟与实验结果将展现所提出的方法在预测问题上的有效及可行性。
This dissertation proposes a feedforward-neural-network-aided grey model (FNAGM) and its related on-line parameter learning and structure learning algorithms. The FNAGM uses a first-order single variable grey model (GM(1,1)) to predict signal and adopts a feedforward neural network (NN) to compensate the prediction error of GM(1,1). Furthermore, an on-line batch training is proposed to update the weights of NN in real-time. Thus, FNAGM can precisely predict and adapt itself to the dynamical change of the signal. To design the structure of FNAGM efficiently, a neuron-based structure learning, called symbiotic structure learning algorithm (SSLA), is proposed to establish the topology of NN. The SSLA constructs a neuron population and then builds a network population from the neuron population, and it can arbitrarily develop cascade NNs and feedforward NNs in an easy way. Further, SSLA carries out neuron crossover and mutation on the neuron population according to the idea of symbiotic evolution. The evolved FNAGM is applied to predict the signal and continuously adapt itself to the environment by the on-line batch training. On the other hand, a network-based structure learning, called evolutionary constructive and pruning algorithm (ECPA), is proposed to design the topology of NN by incorporating constructive and pruning methods in an evolutionary way. The ECPA starts from a set of NNs with the simplest possible structures, one hidden neuron connected to an input node. It then adds hidden neurons and connections by using the network crossover and mutation to increase the processing capabilities of NNs. Furthermore, a cluster-based pruning is proposed to prune insignificant neurons in a stochastic way. An age-based survival selection is proposed to delete old NNs with potentially complex structures and then introduce new NNs with the simplest possible structures. Numerical and experimental results of prediction problems show the effectiveness and feasibility of the proposed methods.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079312801
http://hdl.handle.net/11536/40500
显示于类别:Thesis


文件中的档案:

  1. 280101.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.