标题: | 应用类神经网路减少TFT-LCD产品测试项目之研究 Reducing Test Items of TFT-LCD Product By Using Neural Networks |
作者: | 孔祥竹 苏朝墩 洪瑞云 Chao-Ton Su Ruey-Yun Horng 管理学院工业工程与管理学程 |
关键字: | 类神经网路;回归分析;TFT-LCD;Neural Networks;Regression Analysis |
公开日期: | 2007 |
摘要: | 台湾是国际上TFT-LCD (Thin-Film Transistor Liquid-Crystal Display),薄膜电晶体液晶显示器) 主要的制造和生产基地。由于TFT-LCD在生产设备和仪器的投资金额相当庞大,因此如何降低制造的时间,维持一定的品质,缩短产品的生命周期和加速新产品的开发,比竞争对手更早推出产品在市场上,是企业生存的必要条件。在TFT-LCD的生产过程中,检验和测试是一个大瓶颈。 本研究透过运用类神经网路的方法减少TFT-LCD在生产制造上的测试项目,以期能降低测试的时间和设备的投资,并希望当利用较减少测试项目之检验的结果和使用原有测试项目所检验出的结果要非常近接近。此外,在减少测试项目所做的TFT-LCD面板的品质分类结果,也希望能和原有测试项目所做的TFT-LCD面板的品质分类结果非常近接近。本研究以一实际案例来说明所提类神经网路的方法的有效性,并与传统的统计回归方法进行比较。 Taiwan is the major TFT-LCD (Thin-Film Transistor Liquid-Crystal Display) manufacture and engineering base in the world. Owing to quite huge amount of expense in design and production facilities, the necessary survival criteria for this industry based on how to shorten the manufacturing time, maintain the high quality, cut the product lifecycle and expedite the newer model design on current market, have become critical issue. This research aims to deduct the TFT-LCD test items on manufacturing process via applying Neural Network approach. We expect to reduce the test time and the facility investment, and hopelly to get the same or less inaccuracy test results between reduced test items and original test items. Moreover, the TFT-LCD quality classified results by reduced test items are approximately the same as them by keeping the original test items. This research uses a real example to demonstrate the validity of Neural Network approach and also does the comparison to the traditional statistic regression analysis. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009063526 http://hdl.handle.net/11536/40546 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.