标题: | 多壁碳奈米管辅助聚合物气体感测器阵列于电子鼻系统之应用 Multi-walled CNT-assisted polymer gas sensor array for electronic nose |
作者: | 王立群 Wang, Li-Chun 郭正次 潘扶民 Kuo, Chen-Tzu Pan, Fu-Ming 材料科学与工程学系所 |
关键字: | 多壁碳奈米管;气体感测元件;电子鼻系统;Carbon nanostructures;Gas-sensing devices;Sensing mechanism |
公开日期: | 2012 |
摘要: | 本研究的目的为开发具八个多壁碳奈米管(MWCNT)辅助之聚合物气体感测阵列晶 片,并以此提升电子鼻系统在室温下感测毒化物气体的灵敏度以及对于多种气体之辨识 能力。此气体感测晶片共分成两类,分别是直接以MWCNTs+PVP 复合材料感测器 (MWCNTs+PVP polymer composite sensors)及以聚合物溶液与多壁奈米碳管(MWCNTs) 组成之双层膜堆叠式感测器(polymer / CNTs stacked sensors)。本研究中所使用之测试气 体有三种化学战剂模拟剂气体、六种工业毒化物(toxic industrial compound)气体,以及四 种不同酒类等十三种气体,分别为二甲基甲基磷酸酯(DMMP)、二氯甲烷(DCM)、氰甲 烷(ACN)、四氯化碳(CCl4)、氯仿(CHCl3)、四氢呋喃(THF)、甲苯(Toluene)、二甲苯 (Xylene)、甲乙酮(MEK)、、清酒(Japanese sake)、高梁酒(Kinmen sorghum)、药酒(medicinal liquor)、威士忌(Scotch whisky),在室温下针对不同浓度的目标气体进行测试。 而多壁碳奈米管与PVP 聚合物复材感测器(MWCNTs+PVP polymer composite sensors)及以聚合物与多壁奈米碳管(MWCNTs)形成之双层膜堆叠式感测器(polymer / CNTs stacked sensors)所使用之多壁奈米碳管(MWCNTs)材料,是在热化学气相沉积 (thermal CVD)系统中,以铁钴(FeCo)合金溅镀于矽基板上当触媒并于其上覆盖一层氧化 镁材料辅助成长,再以乙烯(C2H2)及氢气(H2)为成长气体所获得。之后并以扫瞄式电子 显微镜(SEM)及拉曼光谱仪(Raman spectroscopy)来检测其材质特性。另外亦将多壁奈米 碳管(MWCNTs)由试片上刮下以穿透式电子显微镜(TEM)进行检测。而所使用的八种高 分子是根据线性溶合方程式(linear salvation energy relationship (LSER) theory)理论,及其 物理吸附键结(physical absorption bonding)性质所挑选。两个类型的气体感测器均是以液 滴滴定的方式制作以便简化气体感测膜的制程。 此类元件用来进行气体感测的原理是因为感测膜吸附目标气体之后其电性会产生 变化,从而了解其对气体的感测行为并将所获得数据加以整理呈现。而聚合物与多壁奈 米碳管(MWCNTs)形成之双层膜堆叠式感测器(polymer / CNTs stacked sensors)对各种气 体接触后产生多组不同的电阻改变量,接着归纳反应情形为长条图及雷达图,进而建立 各类型化学气体感测资料库。之后再使用两种主要的辨识方法:主成分分析法(principal IV component analysis (PCA))于电脑上运算以及最近邻演算法(k-nearest neighbor (k-NN))于 电子鼻系统上进行辨识,进而判定所感测的气体。 与多壁碳奈米管与PVP 聚合物复材感测器(MWCNTs+PVP polymer composite sensors)比较,此种双层式堆叠的气体感测元件最大的好处是碳奈米管层可以被聚合物层 包覆及保护,避免其直接与反应气体接触以延长其使用时间、元件寿命及其气体感测灵 敏度。另外实验结果亦显示,本研究所使用的十三种气体,于主成分分析法(PCA)以及 最近邻演算法(k-NN)上的辨识结果均非常好。此外,针对部份气体的感测结果亦与其气 体浓度呈现线性关系,且如加以控制环境及减少外界的干扰,其感测灵敏度应可达到 ppm 等级,是十分值得发展的气体感测系统。 For room temperature toxic gas sensing and gas specificity improving, two system chips with two different sensor configurations of a multiwalled carbon nanotube (MWCNT) - assisted polymer gas sensor array of eight sensor types were successfully developed and compared their performance. One chip employed MWCNTs + polyvinylpyrrolidone (PVP) polymer composite sensors and another chip polymer/carbon-nanotubes stacked sensors. Gases tested include three simulants of chemical warfare agents, six toxic industrial compound gas and four commercial liquors, i.e. including dichloromethane, acetonitrile, dimethyl- methyl phosphonate, carbon tetrachloride, chloroform, tetrahydrofuran, toluene, xylene, methyl-ethyl ketone, Japanese sake, Kinmen sorghum, medicinal liquor, and Scotch whisky, respectively. The chip with composite sensors used a mixture of MWCNTs + PVP polymer as sensing material. The chip with stacked sensors employed sensing materials of MWCNTs as the base layer and one of the eight polymer types as the top layer materials. MWCNT powders were scratched from Si wafer, which were prepared by thermal chemical vapor deposition on MgO/FeCo/Si substrate with C2H2 + H2 as source gases, where FeCo acts as catalyst. IV Morphology and bonding structure of the as-deposited MWCNTs were characterized by SEM, TEM and Raman spectroscopy to identify their metallic properties. The eight polymer types were selected according to their linear salvation energy relationship, and physical absorption bonding property differences with respect to different gases in the group for greater gas specificity improvement. Both chips were prepared on Si (001) wafer by solution drop casting method to simplify the process. The principle of gas sensing is basically to measure the different degrees of resistivity changes of the eight sensor types upon contact with a target gas. The sensing responses of eight sensor types on a chip were recorded as a function of time to form a so-called “sensor radar plot”. These data were then analyzed by two different mathematical analysis methods, including principal component analysis (PCA) on a personal computer or laptop, and k-nearest neighbor (k-NN) classification algorithm on an electronic nose system. By comparing the chip with the composite sensors, one of the advantages of the chip with the stacked sensors having a polymer overlayer above the MWCNT layer is to protect the MWCNT from direct interaction with the gas to improve sensor life and sensitivity. The results also indicate that the specificity for one of the three analyte groupss can be determined by its specific radar plot pattern at room temperature for each testing run, using the chip with the stacked sensors made of eight different selected polymer types. The pattern analyses of the radar plots can be simplified through PCA and k-NN analyses. By extrapolation and careful process monitoring, the maximum sensitivity of few ppm among the eight different sensor types is likely. The results also show that a linear relationship between the resistance response and analyte concentration is clearly evident for these toxic gases. The gas sensing mechanisms are discussed in the text |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079318823 http://hdl.handle.net/11536/40568 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.