标题: | 治愈模式之半母数回归分析 Semi-parametric Regression Analysis in Presence of Non-susceptibility |
作者: | 许秋婷 Kor, Chew-Teng 王维菁 Wang, Wei-Jing 统计学研究所 |
关键字: | 混合模式;不受感染体质;补插法;半母数线性回归;线性转换模式;鞅估计函数;对数秩统计量;竞争风险;Transformation model;Martingale;Mixture model;Non-susceptibiblity;Competing risk;EM;Logistic regression;Linear regression model;Latency distribution;Log-rank statistic |
公开日期: | 2009 |
摘要: | 本论文针对存活资料,考虑“不受感染体质”(nonsusceptibility)者之存在,在混合模式架构下提出半母数回归分析方法。我们采用逻辑斯模式分析解释变数与“发病与否”的关系。针对受感染体质者之“潜在发病时间”,我们探讨两类回归模式之推论问题。第一类模式包含常见的加速失败模式和位移模式,我们利用计数程序之机率性质以建构估计函数,并进一步提出模式选取方法。第二类为线性转换模式,包含等比风险模式与等比胜负比模式。我们采用概似函数法做为参数估计的原则,除了分析独立设限的情况外,并进一步提出当存在竞争风险时,如何修正模式假设与推论方法。两个研究方向都利用 EM 的技巧,以补插法处理感染体质不确定之观测值。我们透过模拟实验评估所提出方法在有限样本下之表现。 In this thesis, we consider semiparametric regression analysis for survival data in presence of non-susceptibility or cure. The mixture framework is adopted in analysis of such data. The incidence rate is assumed to follow the logistic regression model and the latency distribution is studied under two types of semiparametric regression models. One class refers to the semi-parametric linear regression model which includes the AFT and location-shift models as special cases. We propose estimating functions and also a model checking procedure based on properties of counting processes. The other class is known as transformation models which contain the proportional hazards model and proportional odds model. The likelihood principle is adopted for parameter estimation. We examine two situations of independent and dependent censoring respectively. In both research directions, the principle of EM is applied to handle uncertain susceptibility status. Simulation results are provided to examine the finite-sample properties of the proposed methods. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079326801 http://hdl.handle.net/11536/40603 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.