标题: | 预测T细胞后天免疫反应 Prediction of adaptive T-cell immune response |
作者: | 童俊维 Tung, Chun-Wei 何信莹 Ho, Shinn-Ying 生物资讯及系统生物研究所 |
关键字: | 致免疫性路径;物理化学特性;智慧型基因演算法;疫苗设计;immunogenic pathway;physicochemical properties;intelligent genetic algorithm;vaccine design |
公开日期: | 2009 |
摘要: | 发展电脑辅助疫苗设计系统能帮助免疫学家能快速有效的辨识候选疫苗,并且是免疫资讯学的终极目标之一。而精准的预测T细胞后天免疫反应是发展电脑辅助疫苗设计系统的关键。本研究之核心为发展能适用于探勘致免疫路径(immunogenic pathways)中各种反应之重要物化特性的高性能大量參數最佳化演算法。此重要物理化学特性探勘系统之研发过程包含了三个重要的步骤:(1)搜集各种能够有效解释生物现象之物理化学特性;(2)结合生物知識与演算法技巧來建立最佳化问题;(3)发展特定的高性能演算法來解决最佳化设计问题。重要特征探勘系统可从大量资讯中探勘重要特征來解释各种免疫反应,并帮助建立T细胞后天免疫反应预测系统。 T细胞后天免疫反应包括有细胞毒性与辅助T细胞免疫反应。对于预测T细胞后天免疫反应,过去的研究多专注于建立主要组织相容性复合物(MHC)第一及第二型分子的抗原处理与表现路径之预测模型。然而被主要组织相容性复合物结合的胜肽抗原并不一定能引起免疫反应。对于更复杂的T细胞免疫反应需要有更深入的研究并建立其预测模型。另外,对于抗原表现有重要影响的蛋白质泛素化(Ubiquitylation),至今仍未有预测模型。高度泛素化的蛋白因较容易被裂解,因而容易产生可供T细胞辨认用的抗原。因此准确的蛋白质泛素化预测将有助于辨识容易引起免疫反应的蛋白质抗原。 本研究专注在研究抗原的内生性物化特性,研发出第一套使用物化特性来预测与主要组织相容性复合物结合之蛋白质引起的T细胞免疫反应预测系统POPI与泛素化预测系统UbiPred。并发现过去普遍认同的抗原与主要组织相容性复合物的结合亲和力并不足以准确预测T细胞免疫反应。针对影响细胞毒性与辅助T细胞免疫反应的重要物化特性之分析比较对于了解免疫反应有极大助益。本研究接着提出基于字串核函数的细胞毒性T细胞免疫反应预测模型POPISK。藉由融入主要组织相容性复合物与胺基酸位置的资讯,POPISK不仅能加强细胞毒性T细胞免疫反应之预测,同时也能准确预测由单一胺基酸突变引起的免疫反应变化。本研究并利用POPISK之特性来研究蛋白抗原上被T细胞辨认的重要位置。本篇研究结果将能帮助了解免疫系统并加速新疫苗的发展。 The development of computer-aided vaccine design systems is a goal of immunoinformatics that can largely accelerate the design of vaccines. Accurate prediction of adaptive T-cell immune response is the critical step to develop computer-aided vaccine design systems. The core of this study is to develop high-performance optimization algorithms for solving large-scale parameter optimization problems of bioinformatics to mine informative physicochemical properties from known experimental data for predicting immunogenic pathway. The development of these algorithms involves three major phases: (a) collection of physicochemical properties for encoding peptide sequences; (b) formulation of optimization problems using domain knowledge and computing techniques and, and (c) development of efficient optimization algorithms for solving optimization problems. The developed informative feature mining algorithms can be used to mine informative physicochemical properties for predicting peptide immunogenicity. There are two major T cells including cytotoxic and helper T cells. For the prediction of adaptive T-cell immune response, previous studies mainly focused on modeling antigen processing and presentation pathways of MHC class I and II. However, the prediction of T-cell response is much harder and less addressed because of the complex nature of T-cell response. Moreover, because over-ubiquitylated protein correlated with its half life, ubiquitylation plays an important role in providing antigen sources. Accurate prediction of ubiquitylation sites is helpful to identify immunogenic peptides. This study proposed the first prediction systems POPI and UbiPred for predicting T-cell response and ubiquitylation sites, respectively. The poor performance of a well recognized affinity-based method shows that binding affinity only is not sufficient for predicting T-cell response. The informative physicochemical properties for cytotoxic and helper T cells are identified and analyzed. Subsequently, an improved prediction system POPISK is proposed to predict cytotoxic T-cell response. The POPISK prediction system incorporating MHC allele information is used to identify important positions for T-cell recognition, and can predict immunogenicity changes made by single residue modifications. This study yields insights into the mechanism of immune response and can accelerate the development of vaccines. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079451502 http://hdl.handle.net/11536/40912 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.