Full metadata record
DC FieldValueLanguage
dc.contributor.author劉家豪en_US
dc.contributor.author李榮耀en_US
dc.contributor.authorLee, Jong-Eaoen_US
dc.date.accessioned2014-12-12T01:25:18Z-
dc.date.available2014-12-12T01:25:18Z-
dc.date.issued2009en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079522546en_US
dc.identifier.urihttp://hdl.handle.net/11536/41209-
dc.description.abstract本篇文章主要是研究古典橢圓函數的理論及其在微分方程式上的運用和分析。 在第一章裡我們定義了橢圓函數並分析其性質,接著介紹了Weierstrass 和 Jacobian 這兩個代表性的橢圓函數。 在第二章裡提供了一些分析相位圖的技巧與方法。 在第三章裡利用 Jacobian 函數解Sine-Gordon equation 所描繪的理想平面鐘擺運動。接著使用第二章所提供的技巧與方法分析非理想狀態下的平面鐘擺運動。 在第四章裡提供了五個物理問題之數學模式用微分方程式來描繪並運用Jacodian 函數來求解。zh_TW
dc.description.abstractIn this paper, we study the classical elliptic functions and the applications to the differential equations. In chapterⅠ, we define the elliptic functions and analyze it’s properties. And then, we introduce Weierstrass functions and Jacobian functions, the two typical elliptic functions. In chapterⅡ, we analyze phase portraits. In chapterⅢ, we study the Sine-Gordon equation that describes the ideal pendulum motion and use Jacobian functions to represent the solutions. We then use the methods in chapterⅡ to analyze pendulum motion with friction. In chapterⅣ, we provide other five physical models described by differential equations and solve them by Jacobian functions.en_US
dc.language.isoen_USen_US
dc.subject橢圓函數zh_TW
dc.subjectElliptic Functionsen_US
dc.title橢圓函數之理論與運用zh_TW
dc.titleThe Theory and Applications of the Elliptic Functionsen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 254602.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.