完整後設資料紀錄
DC 欄位語言
dc.contributor.author傅景祥en_US
dc.contributor.authorFu, Ching-Hsiungen_US
dc.contributor.author吳慶堂en_US
dc.contributor.authorWu, Ching-Tangen_US
dc.date.accessioned2014-12-12T01:30:22Z-
dc.date.available2014-12-12T01:30:22Z-
dc.date.issued2009en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079622533en_US
dc.identifier.urihttp://hdl.handle.net/11536/42517-
dc.description.abstract本論文我們關心的是『如何投資在股票市場將使我們獲利最大』,此問題針對於某些投資者在面對不確定的決策行為符合Linear Cumulative Prospect Theory(線性累積前景理論, LCPT)。LCPT 為Cumulative Prospect Theory 的一特例。本論文採用連續型Black-Scholes 金融市場模型含有一股票和一銀行帳戶。我們推導出其最大獲利的總資產是由投資者的probability weighting function (決策權數函數) 和 discounted Radon-Nikodym derivative 共同決定。在本論文的最後,我們給一例子算出其最大獲利,而且觀察當我們改變其參數時其最大獲利的變化。zh_TW
dc.description.abstractIn this thesis we are concerned with the optimal portfolio selection for an investor who makes decision according to the Linear Cumulative Prospect Theory (LCPT). LCPT is a special case of Cumulative Prospect Theory. We investigate the case of a continuous-time economy model with one risk-free asset and one risky asset. The maximum value of terminal wealth is a supremum relative to the probability weighting function and the discounted Radon-Nikodym derivative. We derive some numerical results and illustrate how these parameters afects the maximum value.en_US
dc.language.isoen_USen_US
dc.subject最佳投資策略zh_TW
dc.subject前景理論zh_TW
dc.subject累積前景理論zh_TW
dc.subjectoptimal portfolio selectionen_US
dc.subjectoptimal strategyen_US
dc.subjectlinear cumulative prospect theoryen_US
dc.subjectcumulative prospect theoryen_US
dc.subjectBlack-Scholes modelen_US
dc.subjectProspect Theoryen_US
dc.title在線性累積前景理論下最佳投資策略的選擇zh_TW
dc.titleOptimal portfolio selection under Linear Cumulative Prospect Theoryen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 253301.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。