完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 傅景祥 | en_US |
dc.contributor.author | Fu, Ching-Hsiung | en_US |
dc.contributor.author | 吳慶堂 | en_US |
dc.contributor.author | Wu, Ching-Tang | en_US |
dc.date.accessioned | 2014-12-12T01:30:22Z | - |
dc.date.available | 2014-12-12T01:30:22Z | - |
dc.date.issued | 2009 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT079622533 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/42517 | - |
dc.description.abstract | 本論文我們關心的是『如何投資在股票市場將使我們獲利最大』,此問題針對於某些投資者在面對不確定的決策行為符合Linear Cumulative Prospect Theory(線性累積前景理論, LCPT)。LCPT 為Cumulative Prospect Theory 的一特例。本論文採用連續型Black-Scholes 金融市場模型含有一股票和一銀行帳戶。我們推導出其最大獲利的總資產是由投資者的probability weighting function (決策權數函數) 和 discounted Radon-Nikodym derivative 共同決定。在本論文的最後,我們給一例子算出其最大獲利,而且觀察當我們改變其參數時其最大獲利的變化。 | zh_TW |
dc.description.abstract | In this thesis we are concerned with the optimal portfolio selection for an investor who makes decision according to the Linear Cumulative Prospect Theory (LCPT). LCPT is a special case of Cumulative Prospect Theory. We investigate the case of a continuous-time economy model with one risk-free asset and one risky asset. The maximum value of terminal wealth is a supremum relative to the probability weighting function and the discounted Radon-Nikodym derivative. We derive some numerical results and illustrate how these parameters afects the maximum value. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 最佳投資策略 | zh_TW |
dc.subject | 前景理論 | zh_TW |
dc.subject | 累積前景理論 | zh_TW |
dc.subject | optimal portfolio selection | en_US |
dc.subject | optimal strategy | en_US |
dc.subject | linear cumulative prospect theory | en_US |
dc.subject | cumulative prospect theory | en_US |
dc.subject | Black-Scholes model | en_US |
dc.subject | Prospect Theory | en_US |
dc.title | 在線性累積前景理論下最佳投資策略的選擇 | zh_TW |
dc.title | Optimal portfolio selection under Linear Cumulative Prospect Theory | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
顯示於類別: | 畢業論文 |