完整後設資料紀錄
DC 欄位語言
dc.contributor.author陳昱如en_US
dc.contributor.author周雨田en_US
dc.date.accessioned2014-12-12T01:32:07Z-
dc.date.available2014-12-12T01:32:07Z-
dc.date.issued2008en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079637515en_US
dc.identifier.urihttp://hdl.handle.net/11536/43041-
dc.description.abstract本篇論文將實現變幅(realized range)概念應用在風險值模型中,利用Martens and van Dijk (2007) 所提出的修正誤差方法,並使用MEM(Multiplicative Error Model)來預測下一期的波動性,得到實現變幅基礎下的風險值模型。此外,本研究也利用常態分配假設下的變異數-共變異數法(variance-covariance method),以及厚尾性質的極值理論 (extreme value theory)兩種不同假設的風險值模型來一起做比較。在實證上,以標準普爾500(S&P 500)指數與那斯達克(Nasdaq)指數的高頻率資料作為研究對象,進行實現變幅、報酬與變幅基礎下的風險值模型在風險值的預測能力比較。實證結果顯示,以實現變幅為基礎下的風險值模型表現優於其他的風險值模型。zh_TW
dc.description.abstractThis paper investigates the concept of realized range into the Value-at-Risk estimation. We follow the bias-correction method of Martens and van Dijk (2007) and use MEM model(Multiplicative Error Model)to forecast volatility and VaR estimation. In addition, we apply two different VaR methods to make the comparison: Variance-covariance method and Extreme value theory. In empirical research, we use the intra-day data of S&P 500 and Nasdaq Index to compare the forecast ability of VaR with realized range, daily return and daily range data. The comparing result shows that realized-range-based VaR model performs better than other models.en_US
dc.language.isoen_USen_US
dc.subject實現變幅zh_TW
dc.subject日內資料zh_TW
dc.subject風險值zh_TW
dc.subject極值理論zh_TW
dc.subject變幅zh_TW
dc.subject波動性zh_TW
dc.subjectRealized rangeen_US
dc.subjectIntra-day dataen_US
dc.subjectValue at Risken_US
dc.subjectExtreme value theoryen_US
dc.subjectRangeen_US
dc.subjectVolatilityen_US
dc.title風險值衡量:實現變幅的應用zh_TW
dc.titleEstimating Value at Risk with Realized Rangeen_US
dc.typeThesisen_US
dc.contributor.department經營管理研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 751501.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。