Title: 微型化螢光鑑別式細胞分選儀
A Miniaturized Fluorescence-Activated Cell Sorter
Authors: 古孟晏
Ku, Meng-Yen
徐琅
Hsu, Long
電子物理系所
Keywords: 細胞分選;介電泳;電滲流;光電滲流;光導電材料;影像辨識;cell sorting;dielectrophoresis;electroosmosis flow;opto-electroosmosis flow;photo-conductive material;image recognition
Issue Date: 2009
Abstract: 在一般生物學研究或是臨床醫療領域,我們總是需要針對病人檢體(如:血液或尿液)中,某種特定的生物粒子進行分析研究。在分析的過程中,我們常需要將檢體中,某種特定的生物粒子,如細胞或細菌,依其彼此之間的質量、大小、表面性質等相異特性,從檢體中分選出來。在過去,一般常被用來分選生物粒子的大型實驗室儀器有離心機、流式細胞儀等,但在操作上,往往需要經過數道繁複且耗時的樣品預處理步驟,無形中增加了檢驗等待的時間,同時也易造成檢體或試劑的消耗與浪費。同時,若在檢體量少的情況之下,如何有效率且節省地處理樣品更顯得重要。由於微流體科學的發展與微機電製造技術的成熟,促使了人們思考將傳統大型的儀器微型化,甚至將各種實驗室樣品預處理步驟,整合至微型化系統中的可能性。藉由微機電製程技術所生產之微流體生醫晶片,具有尺寸微型化、價格低廉、可拋棄式、低樣品或檢體消耗量等優點,並可避免因繁複的人工操作與檢體的浪費等問題,可望使微型化的細胞分選系統逐漸取代傳統大型的細胞分選儀器。因此,本研針對如何分選檢體中的細胞,設計一微型化螢光鑑別式細胞分選系統。 在本研究中,我們提出以光電滲流(opto-electroosmosis flow;OEOF)為核心技術的細胞分選晶片,建立一新式的微型化螢光鑑別式細胞分選系統。有別於目前已發表的微型化細胞分選系統中,常用來分選細胞的致動方法(如:機械式驅動、介電泳、雷射鑷夾等),本研究提出一種新型的細胞分選致動方法:利用光電滲流及時地分選染有螢光的細胞。過去傳統的電滲流(electroosmosis flow;EOF)效應,已被廣泛地應用於微流體等相關研究中,但是通常只能作為驅動流體的微幫浦(micro-pump),或是微型混合器(micro-mixer)。這樣的限制主要是因為其固定的金屬電極形狀、排列與分布,造成流體只能有一個方向的淨流,因此應用上有所限制。本研究利用光導電材經料照光後,於照光區域產生虛擬電極的概念,透過照射光圖形的變化,能及時地產生不同形狀、排列與分布的虛擬電極,使得流體能夠及時地改變淨流方向,我們稱此利用光來操控流體流向的技術為光電滲流技術。我們即利用光電滲流可產生不同淨流方向的特性,做為分選細胞的驅動力,結合自動化影像辨識技術,將染有不同顏色的螢光細胞進行分選。 於我們的晶片中,在不需要外接注射幫浦的情形之下,我們利用電滲流幫浦即可提供樣品與微流體往前傳輸之動力。有別於流式細胞儀中會對細胞造成剪應力傷害的流體聚焦設計,我們設計了特殊的電極陣列,使用對細胞傷害較小的負介電泳力,驅動細胞集中並產生通過偵測區所需的間距。同時,我們不必像流式細胞儀中,使用高壓電場做為分選細胞的驅動力,而是使用低功率的光來改變流體的流向,做為分選的驅動力。使用光電滲流作為細胞分選的驅動力,是第一次被應用在細胞分選這個研究領域。 本論文將闡述本微型化螢光鑑別式細胞分選系統中,所用到的技術與其基本原理,其中包含了電滲流技術、介電泳技術、虛擬電極的概念,以及主要核心技術:光電滲流技術。晶片設計與製造的部分,詳細記錄了晶片的製造過程,也說明了本實驗光電鑷夾系統與螢光成像系統之架設。最後實驗成果的部分,則呈現了目前本晶片系統利用光電滲流技術,成功地在細胞分選晶片上,進行螢光細胞之分選,證明了使用光電滲流技術做為細胞分選致動開關的可行性。
In recent years, the process of bio-samples (ex: blood or urine) pretreatment like cell sorting or purification plays an important role in the biomedical diagnosis and academic research. In the process of analyzing bio-samples, target cells or bacteria are expected to be separated from the samples based on their mass, size difference or surface properties. To date, some large scale laboratory equipment like centrifuge or flow cytometer has been used for cell separation for a long time. However, it takes lengthy and complex sample pretreatment steps which spends a lot of time and sample usage. In addition, how to deal with low volume samples efficiently and frugally is important. Over the past years, the concepts of miniaturization have been considered because of the development of micro-fluidic science and MEMS process. The miniaturized system have several advantages such as lower cost, disposable, less sample and reagent consumption and simplified process. In this thesis, we design a miniaturized fluorescence-activated cell sorter to separate cells from the samples. In this research, we propose a new sorting mechanism: opto-electroosmosis flow as the sorting switch. Unlike other present switching mechanisms like mechanical switch, dielectrophoresis and optical tweezers, this new method is applied in the sorting field for the first time. the traditional electroosmosis flow has been wildly applied in related micro fluidic researches, but usually be used as the micro-pump or micro-mixer. Because of the fixed electrode pattern, traditional electroosmosis flow has only one net bulk flow which restricts the applications in other ways. In this research, we apply the photoconductive material which generates virtual electrodes when exposing to light pattern. The shape and distribution of the virtual electrode pattern changes with the light pattern which can change the direction of electroosmosis flow. We call this opto-electroosmosis flow and use it as the sorting switch。 In our sorting chip, without any Syringe pump, we use electroosmosis flow as the transportation force to transport samples forward. Unlike the hydrodynamic focusing whose shear force may cause damage to cells used in flow cytometer, we design a negative DEP matrix electrode as the focuser. In addition, we use low power light pattern to change the flow direction instead of using high voltage plates to deflect the cells. In this thesis, we will present the basic theories that are used in this sorting system, including electroosmosis flow, dielectrophoresis, virtual electrode and opto- electroosmosis flow. We also describe the fabrication steps of the chips and the whole system setup. Finally, we demonstrate the fluorescence-activated cell sorting with opto-electroosmosis flow switch which can change the net bulk flow directions with the generated light pattern.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079721507
http://hdl.handle.net/11536/44994
Appears in Collections:Thesis