标题: | 微型化萤光鉴别式细胞分选仪 A Miniaturized Fluorescence-Activated Cell Sorter |
作者: | 古孟晏 Ku, Meng-Yen 徐琅 Hsu, Long 电子物理系所 |
关键字: | 细胞分选;介电泳;电渗流;光电渗流;光导电材料;影像辨识;cell sorting;dielectrophoresis;electroosmosis flow;opto-electroosmosis flow;photo-conductive material;image recognition |
公开日期: | 2009 |
摘要: | 在一般生物学研究或是临床医疗领域,我们总是需要针对病人检体(如:血液或尿液)中,某种特定的生物粒子进行分析研究。在分析的过程中,我们常需要将检体中,某种特定的生物粒子,如细胞或细菌,依其彼此之间的质量、大小、表面性质等相异特性,从检体中分选出来。在过去,一般常被用来分选生物粒子的大型实验室仪器有离心机、流式细胞仪等,但在操作上,往往需要经过数道繁复且耗时的样品预处理步骤,无形中增加了检验等待的时间,同时也易造成检体或试剂的消耗与浪费。同时,若在检体量少的情况之下,如何有效率且节省地处理样品更显得重要。由于微流体科学的发展与微机电制造技术的成熟,促使了人们思考将传统大型的仪器微型化,甚至将各种实验室样品预处理步骤,整合至微型化系统中的可能性。藉由微机电制程技术所生产之微流体生医晶片,具有尺寸微型化、价格低廉、可抛弃式、低样品或检体消耗量等优点,并可避免因繁复的人工操作与检体的浪费等问题,可望使微型化的细胞分选系统逐渐取代传统大型的细胞分选仪器。因此,本研针对如何分选检体中的细胞,设计一微型化萤光鉴别式细胞分选系统。 在本研究中,我们提出以光电渗流(opto-electroosmosis flow;OEOF)为核心技术的细胞分选晶片,建立一新式的微型化萤光鉴别式细胞分选系统。有别于目前已发表的微型化细胞分选系统中,常用来分选细胞的致动方法(如:机械式驱动、介电泳、雷射镊夹等),本研究提出一种新型的细胞分选致动方法:利用光电渗流及时地分选染有萤光的细胞。过去传统的电渗流(electroosmosis flow;EOF)效应,已被广泛地应用于微流体等相关研究中,但是通常只能作为驱动流体的微帮浦(micro-pump),或是微型混合器(micro-mixer)。这样的限制主要是因为其固定的金属电极形状、排列与分布,造成流体只能有一个方向的净流,因此应用上有所限制。本研究利用光导电材经料照光后,于照光区域产生虚拟电极的概念,透过照射光图形的变化,能及时地产生不同形状、排列与分布的虚拟电极,使得流体能够及时地改变净流方向,我们称此利用光来操控流体流向的技术为光电渗流技术。我们即利用光电渗流可产生不同净流方向的特性,做为分选细胞的驱动力,结合自动化影像辨识技术,将染有不同颜色的萤光细胞进行分选。 于我们的晶片中,在不需要外接注射帮浦的情形之下,我们利用电渗流帮浦即可提供样品与微流体往前传输之动力。有别于流式细胞仪中会对细胞造成剪应力伤害的流体聚焦设计,我们设计了特殊的电极阵列,使用对细胞伤害较小的负介电泳力,驱动细胞集中并产生通过侦测区所需的间距。同时,我们不必像流式细胞仪中,使用高压电场做为分选细胞的驱动力,而是使用低功率的光来改变流体的流向,做为分选的驱动力。使用光电渗流作为细胞分选的驱动力,是第一次被应用在细胞分选这个研究领域。 本论文将阐述本微型化萤光鉴别式细胞分选系统中,所用到的技术与其基本原理,其中包含了电渗流技术、介电泳技术、虚拟电极的概念,以及主要核心技术:光电渗流技术。晶片设计与制造的部分,详细记录了晶片的制造过程,也说明了本实验光电镊夹系统与萤光成像系统之架设。最后实验成果的部分,则呈现了目前本晶片系统利用光电渗流技术,成功地在细胞分选晶片上,进行萤光细胞之分选,证明了使用光电渗流技术做为细胞分选致动开关的可行性。 In recent years, the process of bio-samples (ex: blood or urine) pretreatment like cell sorting or purification plays an important role in the biomedical diagnosis and academic research. In the process of analyzing bio-samples, target cells or bacteria are expected to be separated from the samples based on their mass, size difference or surface properties. To date, some large scale laboratory equipment like centrifuge or flow cytometer has been used for cell separation for a long time. However, it takes lengthy and complex sample pretreatment steps which spends a lot of time and sample usage. In addition, how to deal with low volume samples efficiently and frugally is important. Over the past years, the concepts of miniaturization have been considered because of the development of micro-fluidic science and MEMS process. The miniaturized system have several advantages such as lower cost, disposable, less sample and reagent consumption and simplified process. In this thesis, we design a miniaturized fluorescence-activated cell sorter to separate cells from the samples. In this research, we propose a new sorting mechanism: opto-electroosmosis flow as the sorting switch. Unlike other present switching mechanisms like mechanical switch, dielectrophoresis and optical tweezers, this new method is applied in the sorting field for the first time. the traditional electroosmosis flow has been wildly applied in related micro fluidic researches, but usually be used as the micro-pump or micro-mixer. Because of the fixed electrode pattern, traditional electroosmosis flow has only one net bulk flow which restricts the applications in other ways. In this research, we apply the photoconductive material which generates virtual electrodes when exposing to light pattern. The shape and distribution of the virtual electrode pattern changes with the light pattern which can change the direction of electroosmosis flow. We call this opto-electroosmosis flow and use it as the sorting switch。 In our sorting chip, without any Syringe pump, we use electroosmosis flow as the transportation force to transport samples forward. Unlike the hydrodynamic focusing whose shear force may cause damage to cells used in flow cytometer, we design a negative DEP matrix electrode as the focuser. In addition, we use low power light pattern to change the flow direction instead of using high voltage plates to deflect the cells. In this thesis, we will present the basic theories that are used in this sorting system, including electroosmosis flow, dielectrophoresis, virtual electrode and opto- electroosmosis flow. We also describe the fabrication steps of the chips and the whole system setup. Finally, we demonstrate the fluorescence-activated cell sorting with opto-electroosmosis flow switch which can change the net bulk flow directions with the generated light pattern. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079721507 http://hdl.handle.net/11536/44994 |
显示于类别: | Thesis |