完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 黃山齊 | en_US |
dc.contributor.author | Huang, Shan-Chi | en_US |
dc.contributor.author | 金周新 | en_US |
dc.contributor.author | 翁志文 | en_US |
dc.contributor.author | Chin, Chou-hsin | en_US |
dc.contributor.author | Weng, Chih-wen | en_US |
dc.date.accessioned | 2014-12-12T01:40:29Z | - |
dc.date.available | 2014-12-12T01:40:29Z | - |
dc.date.issued | 2009 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT079722512 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/45065 | - |
dc.description.abstract | q-形變在許多數學及物理的不同領域裡被廣泛討論。然而,所有已知的討論都是建立在保角變換 x-> qx 之上。在本篇論文中,我們考慮另一種形式的形變,稱之為 q~-形變,它是建立在 x-> x^q 的變換之上。換言之,這類形變發生在變數 x 的次方數上。我們也期待 q~-形變最終會是研究量子群理論的另一途徑。 | zh_TW |
dc.description.abstract | The q-deformation had been wide discussed in many different fields of physics and mathematics. However, all the discussions that we know of are simply based on the conformal mapping x-> qx. Throughout the thesis, we consider deformation of another kind, says q~-deformation, which is based on the mapping x-> x^q. In other words, these kinds of deformations appear in the power of variable x. We expect q~- deformation to be a new approach to the studying of Quantum Groups eventually. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | q-形變 | zh_TW |
dc.subject | 量子形變 | zh_TW |
dc.subject | 量子群 | zh_TW |
dc.subject | 量子線性問題 | zh_TW |
dc.subject | 量子可積系統 | zh_TW |
dc.subject | q-Deformation | en_US |
dc.subject | Quantum deformation | en_US |
dc.subject | Quantum Groups | en_US |
dc.subject | Quantum linear problem | en_US |
dc.subject | Quantum integrable system | en_US |
dc.title | 探討量子形變的新途徑 | zh_TW |
dc.title | A new approach to Quantum Deformation | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
顯示於類別: | 畢業論文 |