完整後設資料紀錄
DC 欄位語言
dc.contributor.author林敬儒en_US
dc.contributor.authorLin, Jing-Ruen_US
dc.contributor.author劉柏村en_US
dc.contributor.authorLiu, Po-Tsunen_US
dc.date.accessioned2015-11-26T01:05:42Z-
dc.date.available2015-11-26T01:05:42Z-
dc.date.issued2010en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079724521en_US
dc.identifier.urihttp://hdl.handle.net/11536/45103-
dc.description.abstract鍺半導體由於擁有較高的電洞和電子遷移率,被視為是下一世代奈米電子元件技術中最有希望取代矽而成為電晶體主動層的半導體材料,但是氧化鍺的熱穩定性較差,使得元件製作過程中的高溫製程將會劣化Ge-MOSFET的元件特性。因此,在我的論文裡,我們提出了一種低溫的超臨界流體技術,針對氧化鍺的熱穩定問題去進行探討。目的是為了利用低溫的處理技術,去改善因為氧化鍺熱解的問題對元件造成裂化的影響。我們研究了鍺型金氧半元件在超臨界二氧化碳流體混合水的熱處理下其電性的改變。首先,我們使用了溫度約150°C超臨界流體混合水的技術,直接對剛沉積完的二氧化矽做處理,我們後續使用了高解析穿透式電子顯微鏡以及X光光電子能譜儀,驗證超臨界流體混合水能有效的使水分子通過二氧化矽到達鍺通道和二氧化矽的界面,進而氧化鍺表面產生鍺型氧化物,使得閘極氧化層厚度增加,並且減少界面的缺陷密度。從電容-電壓曲線可以驗證在經過超臨界處理過後,在中高頻的頻率之下,反轉區的電容值可以有效的被抑制,顯示出超臨界流體具有鈍化鍺通道表面缺陷的能力。在者,我們發現在經過450°C 30分鐘的真空退火之後,發現元件有裂化的情形產生,使得閘極電容下降,漏電流上升,推測跟二氧化鍺的熱解有關,然而在對經過退火後的元件作超臨界處理,我們發現元件特性得到改善,不論是閘極電容值抬升,漏電流下降,都顯示出超臨界二氧化碳流體混合水的確具有通過閘極氧化層進而深入到鍺通道表面去鈍化缺陷的能力。 除此之外,我們利用電子槍真空蒸鍍系統,在低溫下製造二氧化鋯/二氧化鍺元件結構,但不可避免地,在低溫沉積過程中,由於懸鍵和氧空缺的產生,使得元件的特性不佳,而適當的退火可以讓二氧化鋯的薄膜品質變好,並降低界面缺陷。但在600°C 30秒的快速退火後,卻遇到二氧化鍺熱解的問題,使得元件漏電大量抬升,藉由漏電機制的探討可以知道,漏電抬升的原因是因為二氧化鍺熱解問題所產生的淺層缺陷所致,然而在經過後續的超臨界處理,我們發現這些淺層缺陷可以有效的被修補,使得漏電可以被抑制,並且擁有較好的元件特性。 由這些結果顯示,顯示藉由低溫超臨界流體混合水的技術,能減少薄膜的缺陷密度,並且改善鍺型元件在界面的特性。可預期的,若將超臨界流體的特殊特性整合在鍺型電晶體元件的製作上,去修補因為後續高溫製程對元件產生的裂化情形,對於未來高效能鍺型MOSEFT發展,將具有其優勢以及前瞻性。zh_TW
dc.description.abstractIn this study, supercritical fluids (SCF) technology is employed originally to effectively improve the properties of low-temperature-deposited metal oxide dielectric films. In this work, 2μm Ge film are epitaxy on p-type Si by CVD, and 13nm SiO2 was deposited by LPCVD as gate oxide insulator. Then we divided two parts for study in this work. The first part, the supercritical fluids was applied on the as-deposited SiO2 film. By HR-TEM, XPS analyses to verify the capacity of delivering H2O molecule into the SiO2 films for repairing defect states. A smooth interfacial GeO2 layer between gate SiO2 and Ge is thereby formed after SCF treatment, and the frequency dispersion of capacitance-voltage characteristics is also effectively alleviated. The second part, the electrical degradation of Ge-MOS after a post-gate dielectric annealing at 450°C, as the SCF treated, it can be restored to an extent similar to the initial state. Additionally, supercritical fluids technology is also proposed to effectively remove the shallow traps in ZrO2/GeO2 stacks after 600°C annealing, which defects are created by GeO2 decomposition makes GeO desorption to enhance the device leakage increasing obviously. As SCF treated, the leakage was suppressed and the shallow traps are reduced by current mechanism fitting. The low temperature SCF treatment on high performance Ge-MOSFET shows promise as critical technology in resolving GeO2 decomposition.en_US
dc.language.isoen_USen_US
dc.subjectzh_TW
dc.subject超臨界zh_TW
dc.subject低溫zh_TW
dc.subject鈍化zh_TW
dc.subject缺陷zh_TW
dc.subject金氧半zh_TW
dc.subject電容zh_TW
dc.subject絕緣層zh_TW
dc.subjectGeen_US
dc.subjectSupercritical fluiden_US
dc.subjectlow temperatureen_US
dc.subjectpassivateen_US
dc.subjectdefectsen_US
dc.subjectMOSen_US
dc.subjectSCFen_US
dc.title低溫鈍化絕緣層技術應用於鍺型金氧半元件之研究zh_TW
dc.titleStudy of Low Temperature Post-gate Dielectric Treatment for Germanium-based MOS Deviceen_US
dc.typeThesisen_US
dc.contributor.department光電工程學系zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 452101.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。