标题: 非线性随机效应剖面资料之无母数监控方法
Nonparametric Monitoring Schemes for Nonlinear Profiles with Random Effects
作者: 郑清仁
Cheng, Ching-Ren
洪志真
Horng, Jyh-Jen Shiau
统计学研究所
关键字: 管制图;无分配假设;无母数;剖面资料;第一阶段;第二阶段;随机效应;主成分分析;control chart;distribution-free;nonparametric;profile;Phase I;Phase II;random effect;PCA
公开日期: 2012
摘要: 随着现代工业制程的进步,品质的特性经常是以应变量(response)与共变量(covariate)的函数关系呈现,也就是文献里所谓的剖面资料(profile)。因此,为了因应实际的需求,发展剖面资料的管制方法是必要的。近年来亦有多篇文献探讨该议题。此篇论文对于具随机效应的剖面资料提供了完整的管制方法。首先,我们先考虑服从常态分配的剖面资料。为了提升管制方法的效率,我们利用主成分分析得到其主成分记分(principal component score),并利用该记分来发展管制图。在此论文,我们对于常态分配的剖面资料分别探讨在第一阶段(Phase I)和第二阶段(Phase II)的分析。在实际的应用里,资料经常并非服从常态分配的假设。因此,在没有假设资料分配的情况下,我们亦发展剖面资料的管制方法。为此,我们先对于多变量资料,发展无分配假设(distribution-free)的第一阶段管制方法。接着,再对剖面资料发展无分配假设的第一及第二阶段的管制方法。在第一阶段的分析,我们利用型一错误(type-I error)及型二错误(type-II error)来当作衡量准则。而在第二阶段的分析里,我们利用平均运行步长(average run length)来衡量。透过模拟分析,我们所发展的管制方法对于各种制程的变化都能有效地侦测,包含平均位置的位移、资料散布的位移或是函数形状的改变。我们亦利用真实的资料来示范我们所提出的方法的适用性及效率。
As modern technology advances in many industrial processes, the quality characteristics are often gathered in the form of a relationship between the response variable and explanatory variable(s), which are often referred to as profiles in the literature. Therefore, developing schemes for monitoring various types of functional characteristics becomes necessary for practical use and has attracted many researchers in resent years. The purpose of this dissertation is to provide a comprehensive analysis for profiles with random effects. First, the case of the profiles following the Gaussian distribution is considered. To monitor the profiles efficiently, the principal component scores of profiles obtained from the principal component analysis are utilized to construct control charts. Both the Phase I analysis and Phase II monitoring for Gaussian profiles are discussed in this dissertation. Since the Gaussian assumption may be violated in many practical applications, we also develop a distribution-free control chart for profiles. To this end, we first develop a novel distribution-free Phase I control chart for multivariate data. Then, two distribution-free control charts for profile data are constructed for Phase I and Phase II applications, respectively. The type-I and type-II error rates are considered as the performance measures for Phase I analysis whereas the average run length is used for Phase II analysis. Our simulation studies indicate that the proposed control charts are efficient in detecting shifts in various kinds of aspects, including the mean, dispersion, and shape of the profile. Some real data analysis are also provided to demonstrate the applicability and effectiveness of the proposed control charts.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079726803
http://hdl.handle.net/11536/45254
显示于类别:Thesis


文件中的档案:

  1. 680301.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.