完整後設資料紀錄
DC 欄位語言
dc.contributor.author陳雅雯en_US
dc.contributor.author戴天時en_US
dc.date.accessioned2015-11-26T01:08:00Z-
dc.date.available2015-11-26T01:08:00Z-
dc.date.issued2010en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079739543en_US
dc.identifier.urihttp://hdl.handle.net/11536/45678-
dc.description.abstract本論文將以LIBOR 市場模型為基礎,根據不同到期日生效之節點重合遠期利率 樹,提出創新方法建造多期間的遠期利率樹之聯合機率分配。由於LIBOR 市場模 型屬於非馬可夫過程,因此在建立樹狀結構時,因路徑相依的特性造成每期節點 無法重合。本論文採用Ho、Stapleton 和Subrahmanyam(1995)提供節點重合的 建樹方法,建構遠期LIBOR 利率之樹狀結構模型。本文考慮多期的遠期利率之相 關性,利用Cholesky 分解定理的概念,並結合Andricopoulos et al.(2003)求面 積法,推導出遠期LIBOR 利率的聯合機率分配。不僅能夠求算不同期間生效的遠 期利率之條件機率,亦能評價各種型式的利率衍生性商品,並與實務上常受應用 的蒙地卡羅模擬法做比較,證明樹狀模型評價之準確性。zh_TW
dc.description.abstractThis thesis proposes the innovative method of constructing the joint probabilities of forwards rates based on the trees for LIBOR market model. Ho(2008) builds recombined interest trees for simulating the evolution of forwards rates. We suggest that the joint probabilities of forward rates can be constructed by calibrating the correlations with Cholesky decomposition and Andricopoulos et al.(2003)quadrature method. The Monte Carlo simulation is given to verify the correctness of our method in pricing the interest rate derivatives.en_US
dc.language.isozh_TWen_US
dc.subjectLIBOR 市場模型zh_TW
dc.subjectCholesky 分解定理zh_TW
dc.subject蒙地卡羅模擬法zh_TW
dc.subjectLMMen_US
dc.subjectCholesky decompositionen_US
dc.subjectMonte Carlo simulationen_US
dc.title建立遠期LIBOR利率的聯合機率分配zh_TW
dc.titleConstruct Joint Probability Distribution of Forward LIBOR Rateen_US
dc.typeThesisen_US
dc.contributor.department財務金融研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 954301.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。