完整後設資料紀錄
DC 欄位語言
dc.contributor.author林庭宇en_US
dc.contributor.authorLin, Ting-Yuen_US
dc.contributor.author蔡錫鈞en_US
dc.contributor.authorTsai, Shi-Chunen_US
dc.date.accessioned2014-12-12T01:43:15Z-
dc.date.available2014-12-12T01:43:15Z-
dc.date.issued2009en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079755502en_US
dc.identifier.urihttp://hdl.handle.net/11536/45849-
dc.description.abstract硬幣移動問題的初始盤面是一列硬幣,有 n 個五分錢硬幣接連排著 n 個一分錢硬幣。玩家必須重新排序這列硬幣,讓五分錢的硬幣和一分錢的硬幣交錯排列。每一回合,玩家可以把 k 個相鄰的硬幣移動到新的位置。在移動過程中,這 k 個硬幣的相對順序不能調動。 我們證明至少需要 n 回合,才能解決此問題,更針對參數為 k=2 和 k=3 的問題,設計了能產生最佳移法的演算法。此外,我們提出一套建構最佳解答的辦法,並成功套用於參數為 k=4 和 k=5 的問題。zh_TW
dc.description.abstractConsider a line of n nickels and n pennies with all nickels arranged to the left of all pennies, where n >= 3. The puzzle asks the player to rearrange the coins such that nickels and pennies alternate in the line. In each move, the player is allowed to slide k >= 2 adjacent coins to a new position without rotating. We prove that it takes at least n moves to solve the puzzle, and present algorithms to generate the optimal solutions for k = 2 and k = 3. We also propose a framework to extend solutions, and apply it successfully to construct optimal solutions for k = 4 and k = 5.en_US
dc.language.isoen_USen_US
dc.subject硬幣移動問題zh_TW
dc.subjectSliding-Coin Puzzleen_US
dc.title硬幣移動問題的計算複雜度zh_TW
dc.titleOn the Complexity of the Linear Sliding-Coin Puzzleen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 550203.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。