标题: 计算两集合交集与否的公平协定
Fairness of Secure Computation Protocols for Disjointness of Two Sets
作者: 官振杰
Guan, Albert
曾文贵
资讯科学与工程研究所
关键字: 公平协定;集合交集;Fairness Computation Protocols;Set Intersection
公开日期: 2009
摘要: 给定两个有限集合 $A$ 和 $B$.
假设没有一个集合是空的, 而且至少有一个集合包含多于一个元素.
我们设计一个决定此二集合是否有交集的公平且安全的计算协定.

在此计算协定开始时, 每位参与者各自拥有一个集合当作此协定的输入.
在此协定结束时, 每位参与者都知到这两个集合是否有交集,
除此之外, 双方都不知道其他的资讯.
例如: 他们都不知道别人的集合是甚么.
假设此二集合的交集非空集合, 也没有一方会知道这些交集的元素会是甚么,
或是 $A$ 和 $B$ 的交集包含多少元素.

我们的第一个协定对双方而言是完全公平的.
这意思是指, 即使有一方是恶意者,
他不忠实遵守协定来执行, 甚至可以提前结束此协定, 他也占不到便宜.
协定结束之后一定是双方都知道答案或双方都不知道答案.
我们的第二个协定对双方而言几乎是完全公平的.
第二个协定所需要的计算量比第一个少,
而且其安全性所需要的假设条件也比较少.

我们的协定先将两集合的元素转换成模糊的形式,
使得双方都无知道照转换后的元素与原来的元素对应关系.
我们的协定只需要 $O(m n)$ 的比较经过转换之后集合的元素是否相等就可让双方知道答案,
其中 $m$ 和 $n$ 分别为集合 $A$ 和 $B$ 集合元素的个数.
其所需的比较次数和 $A$ 与 $B$ 集合元素的定义范围无关.

我们已知百万富翁问题可以化约为两集合是否有交集的问题来解.
所以, 即使是定议域非常大的百万富翁问题,
利用我们的协定来解百万富翁问题也会非常有效率.
Given two finite nonempty sets $A$ and $B$.
Assume that at least one of the set contains more than one elements.
We present fairness secure computation protocols for determining
whether the given two sets have intersection or not.

Each party has a set as the input to the protocol.
At the end of the protocol both parties know whether the two sets have
intersection or not, but noting else.
In particular, each party does not know the set the other party has.
Furthermore, if the intersection of the two sets is not empty, then none
of the parties know the elements in the intersection, nor do they know
the cardinality of the intersection.

Our first protocol is complete fair with respect to both parties.
At the end of the protocol, both parties knows the final result or none
of them know it, even if there is a malicious party who may violate
the protocol.
Our second protocol is almost complete fair.
The probability that ``one party learns the result but the other does not''
is negligible.
This protocol needs less computational time, and it also needs less
proofs of knowledge in the protocol.

Our protocols need only $O(m n)$ comparisons of the obfuscated elements,
where $m$ and $n$ are the number of elements in $A$ and $B$, respectively.
The number of comparisons is independent of the size of the domain from
which the elements of the sets $A$ and $B$ are selected.

It is known that the millionaires' problem can be reduced to the set
intersection problem.
Therefore, the millionaires' problem can be solved efficiently by our
protocol even if the input domain is very large.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079755534
http://hdl.handle.net/11536/45878
显示于类别:Thesis


文件中的档案:

  1. 553401.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.