完整後設資料紀錄
DC 欄位語言
dc.contributor.author林志峰en_US
dc.contributor.author薛名成en_US
dc.date.accessioned2014-12-12T01:49:14Z-
dc.date.available2014-12-12T01:49:14Z-
dc.date.issued2011en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079820502en_US
dc.identifier.urihttp://hdl.handle.net/11536/47427-
dc.description.abstract本論文中,我們考慮一個 Stefan 類型的問題。主要利用對稱間斷不連續的數值方法來離散這個問題。其中,我們提出相關半離散和全離散的數值方法並證明這兩個數值方法在 L2-norm 都是最佳收斂的。最後,我們執行相關的數值實驗,驗證其理論結果。其數值結果與理論是符合一致的。zh_TW
dc.description.abstractIn this thesis, concerning a Stefan-type problem, we study the discontinuous Galerkin approximation of the problem. Based on the symmetric interior penalty Galerkin method, both the semidiscrete and fully discrete schemes are presented and the optimal orders of convergence in L2-norm are also proven. Some numerical experiments are also performed to confirm our theoretical results.en_US
dc.language.isoen_USen_US
dc.subject史蒂芬zh_TW
dc.subject對稱間斷不連續zh_TW
dc.subject半離散zh_TW
dc.subject全離散zh_TW
dc.subjectStefanen_US
dc.subjectdiscontinuous Galerkinen_US
dc.subjectsemidiscreteen_US
dc.subjectfully discreteen_US
dc.title一個史蒂芬類型問題的數值研討zh_TW
dc.titleNumerical Study of A Stefan-Type Problemen_US
dc.typeThesisen_US
dc.contributor.department應用數學系數學建模與科學計算碩士班zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 050201.pdf
  2. 050202.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。