Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 林易萱 | en_US |
dc.contributor.author | Lin, Yi-Hsuan | en_US |
dc.contributor.author | 楊一帆 | en_US |
dc.contributor.author | Yang, Yifan | en_US |
dc.date.accessioned | 2014-12-12T01:49:36Z | - |
dc.date.available | 2014-12-12T01:49:36Z | - |
dc.date.issued | 2010 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT079822517 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/47517 | - |
dc.description.abstract | 眾所周知的,費馬曲線 x^n+y^n=1 是一個與特殊線性群SL_2(Z)的有限指數子群Γ_n相關聯的模曲線,當n不等於1, 2, 4, 8時, Γ_n是一個非同餘子群。現在令費馬曲線的虧格為g,scholl的定理告訴我們,Γ_n上權為2的尖點型式與由此曲線相關聯的Tate模所建構出的2g維l進數伽羅瓦表現會滿足Atkin and Swinnerton-Dyer同餘。 在這篇論文中,我們將會分解伽羅瓦表現,然後給一個更加精確的Atkin and Swinnerton-Dyer同餘。我們將會解決n=6的情況。 | zh_TW |
dc.description.abstract | It is known that each Fermat curve x^n+y^n=1 is the modular curve associated to some subgroup Γ_n of SL_2(Z) of finite index. Moreover if n≠1,2,4,8 then Γ_n is a noncongruence subgroup. Let g be the genus of the Fermat curve, by Scholl’s theorem, cuspforms of weight 2 on Γ_n, together with the 2g-dimensional l-adic Galois representations coming from the Tate module associate this curve, satisfy the Atkin and Swinnerton-Dyer congruence. In this thesis, we decompose this Galois representation and give a more precise Atkin and Swinnerton-Dyer congruence. The case n=6 will be completely worked out. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 模形式 | zh_TW |
dc.subject | 費馬曲線 | zh_TW |
dc.subject | ASD同餘 | zh_TW |
dc.subject | Modular form | en_US |
dc.subject | Fermat curve | en_US |
dc.subject | ASD congruence | en_US |
dc.title | 非同餘子群的模型式的同餘性質 | zh_TW |
dc.title | Atkin and Swinnerton-Dyer congruences associated to Fermat curves | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
Appears in Collections: | Thesis |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.