标题: 利用视觉诱发脑电波之身份辨识
Person Identification using Electroencephalographic Signals Evoked by Visual Stimuli
作者: 林家萍
Lin, Jia-Ping
陈永升
Chen, Yong-Sheng
生医工程研究所
关键字: 脑电图;身份辨识;视觉刺激诱发电位;EEG;person identification;VEP
公开日期: 2011
摘要: 近年来利用生物特征的方式来进行身份辨识越来越普遍,其原因是由于生物特征具有难以遭到破解或窃取的优点。然而,随着科技的进步目前的生物特征(例如:指纹、虹膜等)已有被复制的风险。由于脑电波具有个体间的差异,因此在本研究中我们利用视觉刺激诱发的脑电波为分析讯号来发展身份辨识系统,实验于安静无干扰的房间进行 ,让受测者接受事件相关的视觉刺激(oddball paradigm),利用刺激材料出现频率的不同诱发出脑波的事件相关电位。辨识的步骤主要分为类别与确认两大部分,并利用支援向量机作为分类器。类别的部分,原始讯号经过特征撷取后藉由一个多种类的分类器会得到一个一对多的分类结果;而接着在确认部分,由类别步骤所得到的最佳分类结果经由此部分二元的分类器进行确认。特征撷取方面,包含了降维,时域以及频域的分析方法,能将具有代表性的资讯保留。此外,我们尝试利用重复确认步骤的二元分类器将前一步骤(类别)分类错误的资料进行修正,修正的准则是依照支援向量机中的信赖评估为指标。
我们利用18位受测者的辨识结果得到97.25%的准确率,并且再经由确认的步骤能达到98.89%的正确接受率,这样的结果显示脑电波讯号具有的个体差异性足够用于进行身份辨识且利用类别和确认两部分的结合能达到一个好的准确率,且辨识的可信度提升。而更深入的讨论讯号间的差异,我们发现不同受测者的讯号相关性低于同一受测者不同天的受测资料,这个发现符合脑电波具有低个体内差异性以及高个体间差异性,且随着时间的变化同一人的讯号是恒定的。相关性的高低也解释了某些受测者容易被错误分类的情况,也就是他们和其他人的讯号具有高度的相关性。总结我们系统所得出结果显示,结合未来硬体发展更趋成熟脑波能成为一个新的生物特征以发展成一套更安全的辨识系统。
The biometrics contains emerging methods for human identification. As advances in technology, conventional techniques using fingerprint or iris have the risk of being duplicated. In this work we utilize the inter-subject differences in the electroencephalographic (EEG) signals evoked by visual stimuli for person identification. The identification procedure is divided into classification and verification phases. For our classification system, it is based on the supervised classification method with support vector machine.
During the classification phase, we extract the representative information from the EEG signals of each subject and construct a multi-class classifier. The best-matching candidate is further confirmed in the verification phase by using a binary classifier.
The methods of feature extraction include dimension reduction and time-frequency analysis. Moreover, we try to correct those misclassified data through the iterative verification that depends on the confidence values of SVM classifier, which is a confidence level of classification. According to our experiments in which 18 subjects were recruited, the proposed method can achieve 97.25% identification rate. The results revealed that EEG data with individual differences can reach a high accuracy in person identification. Combining classification with verification, the reliability of the system can be increased. The correlation values of EEG signals between different subjects is lower than those of EEG signals acquired at different days for the same subject. This finding suggests that the characteristics of EEG has low intra-subject variability but high inter-subject variability and it is stable over time. The correlation values may also explain why some subjects apt to be misclassified when they have high correlation values to others. Our experimental results demonstrated that the proposed methods have great potentials for identifying individuals in daily life applications.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079830505
http://hdl.handle.net/11536/47757
显示于类别:Thesis


文件中的档案:

  1. 050501.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.